Advertisement

Foundations of Physics

, Volume 22, Issue 3, pp 395–420 | Cite as

Continuum and discretum—Unified field theory and elementary constants

  • Hans-Jürgen Treder
Part IV. Invited Papers Dedicated To Sir Karl Popper

Abstract

Unitary field theories and “SUPER-GUT” theories work with an universal continuum, the structured spacetime of R. Descartes, B. Spinoza, B. Riemann, and A. Einstein, or a (Machian (1–3) ) structured vacuum according the quantum theory of unitary fields (Dirac, (4,5) and Heisenberg (6–8) ). The atomistic aspect of the substantial world is represented by the fundamental constants which are invariant against “all transformations” and which “depend on nothings” (Planck (9–11) ). A satisfactory unitary theory has to involve these constants like the mathematical numbers. Today, Planck's conception of the three elementary constants ħ, c, and G may be the key to general relativistic quantum field theory like unitary theory. However, the elementary constants are a question of measurement-theory, also.

According to Popper's theory (12–16) of induction, such unitary theories are “universal explaining theories.” The fundamental constants involve the complementarity between the universal statements in unitary theory and the “basic statements” in the language of classical observables.

Keywords

Field Theory Relativistic Quantum Unitary Theory Fundamental Constant Universal Statement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Mach,Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit (1871), 2nd. edn. (Leipzig, 1909).Google Scholar
  2. 2.
    E. Mach,Die Mechanik in ihrer Entwicklung (1883), 7th edn. (Leipzig, 1933).Google Scholar
  3. 3.
    E. Mach,Prinzipien der Wärmelehre, 4th edn. (Leipzig, 1923).Google Scholar
  4. 4.
    P. A. M. Dirac,Die Prinzipien der Quantenmechanik (Leipzig, 1930).Google Scholar
  5. 5.
    P. A. M. Dirac,Lectures on Quantum Mechanics (New York, 1964).Google Scholar
  6. 6.
    W. Heisenberg,Die physikalischen Prinzipien der Quantentheorie (Leipzig, 1931).Google Scholar
  7. 7.
    W. Heisenberg,Wandlungen in den Grundlagen der Naturwissenschaft, 8th edn. (Stuttgart, 1948).Google Scholar
  8. 8.
    W. Heisenberg,Der Teil und das Ganze (München, 1969).Google Scholar
  9. 9.
    M. Planck,Theorie der Wärmestrahlung (1906), 2nd. edn. (Leipzig, 1913).Google Scholar
  10. 10.
    M. Planck,Theorie der Wärme, 2nd. edn. (Leipzig, 1932).Google Scholar
  11. 11.
    M. Planck,Abhandlungen und Vorträge, Vols. I-III (Braunschweig, 1958).Google Scholar
  12. 12.
    K. Popper,Logik der Forschung (Vienna, 1935).Google Scholar
  13. 13.
    K. Popper,The Logic of Scientific Discovery. (London, 1959), 5th edn. (London, 1968).Google Scholar
  14. 14.
    K. Popper,Conjectures and Refutations (London, 1963).Google Scholar
  15. 15.
    K. Popper, “Conjectural knowledge: My solution of the problem of induction,Revue Int. Phil. 25, 167–197 (1971).Google Scholar
  16. 16.
    K. Popper,Unending Quest, 6th edn. (Glasgow, 1982).Google Scholar
  17. 17.
    N. Bohr,Atomtheorie und Naturbeschreibung (Berlin, 1931).Google Scholar
  18. 18.
    N. Bohr,Atomphysikund menschliche Erkenntnis, I & II. (Brauschweig, 1958, 1966).Google Scholar
  19. 19.
    N. Bohr,Der Kopenhagener Geist in der Physik, K. von Meyenn, K. Stolzenberg, and R. Sexl, eds. (Braunschweig, 1985).Google Scholar
  20. 20.
    A. Einstein,Grundlagen der allgemeinen Relativitātstheorie (Leipzig, 1916).Google Scholar
  21. 21.
    A. Einstein,Out of My Later Years (New York, 1950).Google Scholar
  22. 22.
    A. Einstein,The Meaning of Relativity, 4th and 5th edn. (Princeton, 1950, 1955).Google Scholar
  23. 23.
    A. Einstein,Über die spezielle und die allgemeine Relativitätstheorie, 21 st. edn. (Berlin, Braunschweig, Oxford, 1969).Google Scholar
  24. 24.
    A. Einstein,Akademie-Vorträge (Berlin, 1978).Google Scholar
  25. 25.
    Albert Einstein: Philosopher-Scientist, P. A. Schilpp, ed. (La Salle, 1949).Google Scholar
  26. 26.
    Albert Einstein—His Influence in Physics, Philosophy and Politics, P. Aichelburg and R. Sexl, eds. (Braunschweig, 1979).Google Scholar
  27. 27.
    A. Einstein—M. Born, Briefwechsel (München, 1969).Google Scholar
  28. 28.
    L. Boltzmann,Vorlesungen über Gastheorie, I & II (Leipzig 1896, 1898). AlsoPopuläre Schriften (Leipzig, 1906).Google Scholar
  29. 29.
    J. W. Gibbs,Elementary Principles in Statistical Mechanics (New Haven, 1902).Google Scholar
  30. 30.
    T. Levi-Civita,The Absolute Differential Calculus (London, 1926).Google Scholar
  31. 31.
    L. P. Eisenhart,Riemannian Geometry (Princeton, 1949).Google Scholar
  32. 32.
    H.-J. Treder,Die Relativität der Trägheit (Berlin, 1972).Google Scholar
  33. 33.
    H.-J. Treder,Gravitation Theory and Equivalence Principle (in Russian). (Moscow, 1979).Google Scholar
  34. 34.
    H.-J. Treder, “Geometrisierung der Physik und Physikalisierung der Geometrie,”Berliner Ber. 14N (1975).Google Scholar
  35. 35.
    H.-J. Treder, On the problem of physical meaning of quantization of gravitational fields, in F. de Finis, ed.Relativity, Quanta, and Cosmology (New York, 1979).Google Scholar
  36. 36.
    H.-J. Treder, Galilei invariance, action-reaction principle and centre of mass theorem, in A. O. Barut, A. van der Merwe and J. P. Vigier, eds.,Quantum, Space und Time—The Quest Continues (Cambridge, 1984).Google Scholar
  37. 37.
    H.-J. Treder, “On the fifth force,”Found. Phys. 21 (3), 283–298 (1991).Google Scholar
  38. 38.
    G. Y. Rainich,Mathematics of Relativity, 2nd edn. (New York, 1954).Google Scholar
  39. 39.
    J. A. Wheeler,Geometrodynamics (New York, 1962).Google Scholar
  40. 40.
    J. A. Wheeler, Wie steht es heute mit Einsteins Programm—alles als Geometrie zu verstehen, inEntstehung, Entwicklung und Perspektiven der Einsteinschen Gravitation-stheorie, H.-J. Treder, ed. (Berlin, 1966).Google Scholar
  41. 41.
    A. S. Eddington,Relativitätstheorie in Mathematischer Behandlung (Berlin, 1925).Google Scholar
  42. 42.
    A. S. Eddington,Fundamental Theory (Cambridge, 1948).Google Scholar
  43. 43.
    H. Weyl,Das Kontinuum (Vienna, 1918).Google Scholar
  44. 44.
    H. Weyl,Raum, Zeit, Materie, 5th edn. (Berlin, 1923).Google Scholar
  45. 45.
    H. Weyl, 50 Jahre Relativitätstheorie,Naturwiss. 38, 73–83 (1950).Google Scholar
  46. 46.
    E. Schrödinger,Space-Time Structure (Cambridge, 1950).Google Scholar
  47. 47.
    E. Schrödinger,Statistische Thermodynamik (Leipzig, 1952).Google Scholar
  48. 48.
    E. Schrödinger,Expanding Universes (Cambridge, 1956).Google Scholar
  49. 49.
    P. Jordan,Schwerkraft und Weltall, 2nd. edn. (Braunschweig, 1955).Google Scholar
  50. 50.
    PP. Jordan, Über das Verhältnis der Theorie der Elementarlänge zur Quantentheorie, I. & II,Comm. Math. Phys. 9, 279–292 (1968);11, 293–296 (1969).Google Scholar
  51. 51.
    P. G. Bergmann,Introduction to the Theory of Relativity (New York, 1942).Google Scholar
  52. 52.
    P. G. Bergmann, Unified field theory: Yesterday, today, tomorrow, inEinstein-Centenarium, H.-J. Treder, ed. (Berlin 1979).Google Scholar
  53. 53.
    V. Hlavatý,Geometry of Einstein's Unified Field Theory (Groningen, 1957).Google Scholar
  54. 54.
    M. Born,Physik im Wandel meiner Zeit (Braunschweig, Berlin, 1957).Google Scholar
  55. 55.
    W. Pauli, ed.,Niels Bohr and the Development of Physics (London, 1955).Google Scholar
  56. 56.
    W. Pauli,Theory of Relativity (London, 1958).Google Scholar
  57. 57.
    W. Pauli,Aufsätze und Vorträge zur Physik (Braunschweig, 1961).Google Scholar
  58. 58.
    W. Pauli,Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Vol. I & II, A. Hermann, K. von Meyenn, V. F. Weisskopf, eds. (New York, 1979, 1984).Google Scholar
  59. 59.
    L. Rosenfeld, Quantentheorie und Gravitation, in H.-J. Treder, ed.,Quantentheorie und Theorie der Elementarteilchen (Berlin, 1979).Google Scholar
  60. 60.
    L. Rosenfeld,Selected Papers, R. S. Cohen and J. Stachel, eds. (Dordrecht, 1979).Google Scholar
  61. 61.
    H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl,Das Relativitätsprinzip, 6th edn. (Darmstadt, 1958).Google Scholar
  62. 62.
    P. W. Bridgman,Dimensional Analysis, 2nd edn. (New Haven, 1931).Google Scholar
  63. 63.
    H. von Helmholtz and H. Hertz,Zur Grundlegung der theoretischen Physik, R. Rompe and H.-J. Treder, eds.Google Scholar
  64. 64.
    C. F. v. Weizsäcker,Zum Weltbild der Physik, 3rd. edn. (Leipzig, 1945).Google Scholar
  65. 65.
    C. F. von Weizsäcker,Aufbau der Physik (Vienna, 1985).Google Scholar
  66. 66.
    N. Bohr and L. Rosenfeld, “Zur Frage der Meßbarkeit der elektromagnetischen Feldgrößen,”Det. Kgl. Dansk, Vid. Selsk. Kopenhagen Nr. 12 (1933).Google Scholar
  67. 67.
    J. B. Barbour,Absolute or Relative Motion? (Cambridge, 1989).Google Scholar
  68. 68.
    A. O. Barut, Unification based on electromagnetism,Ann. Phys. (Leipzig) 43, 83–92 (1985).Google Scholar
  69. 69.
    D. Bohm,Causality and Chance (London, 1958).Google Scholar
  70. 70.
    Louis de Broglie—Physicien et penseur (Paris, 1953).Google Scholar
  71. 71.
    L. E. J. Brouwer,Mathematik, Wissenschaft und Sprache (Wien, 1920).Google Scholar
  72. 72.
    H. F. Goenner, Machsches Prinzip und Theorien der Gravitation, inGrundlagenprobleme der modernen Physik (Mannheim, 1981).Google Scholar
  73. 73.
    F. Hund,Geschichte der Quantentheorie, 3rd. edn. (Mannheim, 1984).Google Scholar
  74. 74.
    M. Jammer,The Conceptual Development of Quantum Mechanics (New York, 1966).Google Scholar
  75. 75.
    A. Kawaguchi, The Notion of Geometry, in H.-J. Treder, ed.,Einstein-Centenarium. (Berlin, 1979).Google Scholar
  76. 76.
    A. Mercier, H.-J. Treder, and W. Yourgrau,On General Relativity (Berlin, 1979).Google Scholar
  77. 77.
    E. Nelson,Quantum Fluctuations (Princeton, 1985).Google Scholar
  78. 78.
    R. Rompe and H.-J. Treder,Zählen und Messen (Berlin, 1984).Google Scholar
  79. 79.
    R. Rompe and H.-J. Treder,Elementarkonstanten und was sie bedeuten (Berlin, 1988).Google Scholar
  80. 80.
    M.-A. Tonnelat,Les théories unitaires de l'électromagnétisme et de la gravitation (Paris, 1965).Google Scholar
  81. 81.
    E. Wigner,The Unity of Science (New York, 1975).Google Scholar
  82. 82.
    W. Yourgrau and A. van der Merwe, eds.,Perspectives in Quantum Theory (New York, 1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Hans-Jürgen Treder
    • 1
  1. 1.PotsdamGermany

Personalised recommendations