Foundations of Physics

, Volume 23, Issue 10, pp 1357–1374 | Cite as

Distance geometry and geometric algebra

  • Andreas W. M. Dress
  • Timothy F. Havel
Part II. Invited Papers Dedicated To David Hestenes


As part of his program to unify linear algebra and geometry using the language of Clifford algebra, David Hestenes has constructed a (well-known) isomorphism between the conformal group and the orthogonal group of a space two dimensions higher, thus obtaining homogeneous coordinates for conformal geometry.(1) In this paper we show that this construction is the Clifford algebra analogue of a hyperbolic model of Euclidean geometry that has actually been known since Bolyai, Lobachevsky, and Gauss, and we explore its wider invariant theoretic implications. In particular, we show that the Euclidean distance function has a very simple representation in this model, as demonstrated by J. J. Seidel.(18)


Euclidean Distance Distance Function Linear Algebra Simple Representation Euclidean Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Hestenes, “The design of linear algebra and geometry,”Acta Appl. Math. 23, 65–93 (1991).Google Scholar
  2. 2.
    H. A. Kastrup, “Zur physikalischen Deutung und darstellungstheoretischen Analyse der konformen Transformationen von Raum und Zeit,”Ann. Phys. (Leipzig) 9, 388–428 (1962).Google Scholar
  3. 3.
    A. Crumeyrolle,Orthogonal and Symplectic Clifford Algebras, Spinor Structures (Kluwer Academic, Dordrecht, 1990).Google Scholar
  4. 4.
    D. Hestenes, “Universal geometric algebra,”Simon Stevin 62, 253–274 (1988).Google Scholar
  5. 5.
    L. V. Ahlfors, “Möbius transformations and Clifford numbers,” in I. Chavel and H. M. Farkas, eds.,Differential Geometry and Complex Analysis (Springer, Berlin, 1985).Google Scholar
  6. 6.
    J. Maks, “Modulo (1, 1) Periodicity of Clifford Algebras and Generalized (anti-)Möbius Transformations,” PhD thesis, T.U. Delft, 1989.Google Scholar
  7. 7.
    P. Lounesto and A. Springer, “Möbius transformations and Clifford algebras of Euclidean and anti-Euclidean spaces,” in J. Lawrynowicz, ed.,Deformations of Mathematical Structures (Kluwer Academic, Dordrecht, 1989), pp. 79–90.Google Scholar
  8. 8.
    J. P. Fillmore and A. Springer, “Möbius groups over general fields using Clifford algebras associated with spheres,”Int. J. Theor. Phys. 29, 225–246 (1990).Google Scholar
  9. 9.
    F. Klein,Elementary Mathematics from an Advanced Standpoint: Geometry (Dover, London, 1939; translated from the original in German).Google Scholar
  10. 10.
    M. J. Crowe,A History of Vector Analysis (University of Notre Dame Press, Notre Dame, 1967).Google Scholar
  11. 11.
    D. Hestenes,New Foundations for Classical Mechanics (Reidel, Dordrecht, 1986).Google Scholar
  12. 12.
    J. A. Thorpe,Elementary Topics in Differential Geometry (Springer, New York, 1979).Google Scholar
  13. 13.
    K. Menger, “Untersuchungen über allgemeine Metrik,”Math. Ann. 100, 75–163 (1928).Google Scholar
  14. 14.
    K. Menger, “New foundation of Euclidean geometry,”Am. J. Math. 53, 721–745 (1931).Google Scholar
  15. 15.
    J. J. Seidel, “Distance-geometric development of two-dimensional Euclidean, hyperbolic and spherical geometry,”Simon Stevin 29, 32–50, 65–76 (1952).Google Scholar
  16. 16.
    L. M. Blumenthal,Theory and Applications of Distance Geometry (Cambridge University Press, Cambridge, 1953; reprinted by Chelsea, London, 1970).Google Scholar
  17. 17.
    L. M. Blumenthal,A Modern View of Geometry (Dover, New York, 1961).Google Scholar
  18. 18.
    J. J. Seidel, “Angles and distances inn-dimensional Euclidean and non-Euclidean geometry,” I–III.Indag. Math. 17, 329–340, 535–541 (1955); reprinted byProc. Ned. Akad. Wetensch.Google Scholar
  19. 19.
    J. Dieudonné and J. B. Carrell, “Invariant theory, old and new,”Adv. Math. 4, 1–80 (1970); reprinted by Academic Press, 1971.Google Scholar
  20. 20.
    H. Kraft,Geometrische Methoden in der Invariantentheorie (Vieweg, Braunschweig, Germany, 1985).Google Scholar
  21. 21.
    D. R. Richman, “The fundamental theorems of vector invariants,”Adv. Math. 73, 43–78 (1989).Google Scholar
  22. 22.
    D. Hilbert, “Über die vollen invariantensysteme,”Math. Ann. 42, 313–373 (1893).Google Scholar
  23. 23.
    Ch. S. Fisher, “The death of a mathematical theory: A study in the sociology of knowledge,”Arch. History Exact Sci. 3, 137–159 (1966).Google Scholar
  24. 24.
    D. Hestenes and R. Ziegler, “Projective geometry with Clifford algebra,”Acta Appl. Math. 23, 25–63 (1991).Google Scholar
  25. 25.
    N. L. White, “Invariant-theoretic computation in projective geometry,” inDIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 6 (American Mathematical Society, 1991), pp. 363–377.Google Scholar
  26. 26.
    N. L. White, “Multilinear Cayley factorization,”J. Symb. Comput. 11, 421–438 (1991).Google Scholar
  27. 27.
    T. McMillan and N. L. White, “The dotted straightening algorithm,”J. Symb. Comput. 11, 471–482 (1991).Google Scholar
  28. 28.
    B. Buchberger, “History and basic features of the critical-pair/completion procedure,”J. Symb. Comput. 3, 3–38 (1987).Google Scholar
  29. 29.
    B. Sturmfels and N. White, “Gröbner bases and invariant theory,”Adv. Math. 76, 245–259 (1989).Google Scholar
  30. 30.
    T. F. Havel, “Some examples of the use of distances as coordinates for Euclidean geometry,”J. Symb. Comput. 11, 579–593 (1991).Google Scholar
  31. 31.
    J. Dalbec and B. Sturmfels, personal communication.Google Scholar
  32. 32.
    A. W. M. Dress and T. F. Havel, “Fundamentals of the distance geometry approach to the problems of molecular conformation,” inProc. INRIA Workshop on Computer-Aided Geometric Reasoning, 1987.Google Scholar
  33. 33.
    G. M. Crippen and T. F. Havel,Distance Geometry and Molecular Conformation (Research Studies Press, Letchworth, U.K., 1988; U.S. distributer: Wiley, New York).Google Scholar
  34. 34.
    T. E. Cecil,Lie Sphere Geometry (Springer, New York, 1992).Google Scholar
  35. 35.
    D. Pedoe,A Course of Geometry for Colleges and Universities (Cambridge University Press, Cambridge, 1970).Google Scholar
  36. 36.
    E. Snapper and R. J. Troyer,Metric Affine Geometry (Academic, New York, 1971; reprinted by Dover, 1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Andreas W. M. Dress
    • 1
  • Timothy F. Havel
    • 2
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeld 1Germany
  2. 2.Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBoston

Personalised recommendations