Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Review of invariant time formulations of relativistic quantum theories


The purpose of this paper is to review relativistic quantum theories with an invariant evolution parameter. Parametrized relativistic quantum theories (PRQT) have appeared under such names as constraint Hamiltonian dynamics, four-space formalism, indefinite mass, micrononcausal quantum theory, parametrized path integral formalism, relativistic dynamics, Schwinger proper time method, stochastic interpretation of quantum mechanics and stochastic quantization. The review focuses on the fundamental concepts underlying the theories. Similarities as well as differences are highlighted, and an extensive bibliography is provided.

This is a preview of subscription content, log in to check access.


  1. Aghassi, J. J., Roman, P., and Santilli, R. M. (1970a). “New dynamical group for the relativistic quantum mechanics of elementary particles,”Phys. Rev. D 1, 2753.

  2. Aghassi, J. J., Roman, P., and Santilli, R. M. (1970b). “Relation of the inhomogeneous dynamical de Sitter group to the quantum mechanics of elementary particles,”J. Math. Phys. 11, 2297.

  3. Aghassi, J. J., Roman, P., and Santilli, R. M. (1971). “Representation theory of a new relativistic dynamical group,”Nuovo Cimento 5A, 551.

  4. Alt, E. O., and Hannemann, M. (1986). “Relativistic scattering theory of charged spinless particles,”Czech. J. Phys. B 36, 922.

  5. Arensburg, A., and Horwitz, L. P. (1991). “Landau levels as mass excitations in relativistic quantum theory,”Found. Phys. Lett. 4, 247.

  6. Arshansky, R. I., and Horwitz, L. P. (1985). “The Landau-Peierls relation and a causal bound in covariant relativistic quantum theory,”Found. Phys. 15, 701.

  7. Arshansky, R. I., and Horwitz, L. P. (1988). “Covariant phase shift analysis for relativistic potential scattering,”Phys. Lett. A 131, 222.

  8. Arshansky, R. I., and Horwitz, L. P. (1989a). “The quantum relativistic two-body bound state. I. The spectrum,”J. Math. Phys. 30, 66.

  9. Arshansky, R. I., and Horwitz, L. P. (1989b). “The quantum relativistic two-body bound state. II. The induced representation of SL (2, C),”J. Math. Phys. 30, 380.

  10. Arshansky, R. I., and Horwitz, L. P. (1989c). “Relativistic potential scattering and phase shift analysis,”J. Math. Phys. 30, 213.

  11. Arshansky, R. I., Horwitz, L. P., and Lavie, Y. (1983). “Particles vs. events: the concatenated structure of world lines in relativistic quantum mechanics,”Found. Phys. 13, 1167.

  12. Arunasalam, V. (1970). “Hamiltonian and wave equations for particles of spin 0 and spin 1/2 with nonzero mass,”Am. J. Phys. 38, 1010.

  13. Bakri, M. M. (1971). “The canonical proper-time formalism,”Lett. Nuovo Cimento 2, 603.

  14. Barut, A. O. (1990). “Excited states ofZitterbewegung,”Phys. Lett. B 237, 436.

  15. Barut, A. O. (1991). “The covariant many-body problem in quantum electrodynamics,”J. Math. Phys. 32, 1091.

  16. Barut, A. O., and Duru, I. H. (1989). “Path integral formulation of quantum electrodynamics from classical particle trajectories,”Phys. Rep. 172, 1.

  17. Barut, A. O., and Pavsic, M. (1987). “Classical model of the Dirac electron in curved space,”Class. Quantum Gravit. 4, L41.

  18. Barut, A. O., and Pavsic, M. (1988). “Kaluza-Klein approach to the classical model of the Dirac electron,”Class. Quantum Gravit. 5, 707.

  19. Barut, A. O., and Thacker, W. (1985a). “Covariant generalization of theZitterbewegung of the electron and itsSO(4, 2) andSO(3, 2) internal algebras,”Phys. Rev. D 31, 1386.

  20. Barut, A. O., and Thacker, W. (1985b). “Zitterbewegung of the electron in external fields,”Phys. Rev. D 31, 2076.

  21. Barut, A. O., and Unal, N. (1989). “Generalization of the Lorentz-Dirac equation to include spin,”Phys. Rev. A 40, 5404.

  22. Barut, A. O., and Zanghi, N. (1984). “Classical model of the Dirac electron,”Phys. Rev. Lett. 52, 2009.

  23. Barut, A. O., Onem, C., and Unal, N. (1990). “The classical relativistic two-body problem with spin and self-interactions,”J. Phys. A 23, 1113.

  24. Bjorken, J. D., and Drell, S. D. (1964).Relativistic Quantum Mechanics (McGraw-Hill, New York).

  25. Blaha, S. (1975). “Relativistic bound-state models with quasifree constituent motion,”Phys. Rev. D 12, 3921.

  26. Breit, J. D., Gupta, S., and Zaks, A. (1984). “Stochastic quantization and regularization,”Nucl. Phys. B 233, 61.

  27. Broyles, A. A. (1970). “Space-time position operators,”Phys. Rev. D 1, 979.

  28. Brown, L. S. (1977). “Stress-tensor trace anomaly in a gravitational metric: scalar fields,”Phys. Rev. D 15, 1469.

  29. Burdet, G., and Pertin, M. (1990). “Global formulation of the Fokker-Planck equation over Newton-Cartan and Einstein space-times,”Europhys. Lett. 12, 199.

  30. Cai, Y. Q., and Papini, G. (1990). “Applying Berry's phase to problems involving weak gravitational and inertial fields,”Class. Quantum Gravit. 7, 269.

  31. Camporesi, R. (1990). “Harmonic analysis and propagators on homogeneous spaces,”Phys. Rep. 196, 1.

  32. Castell, L. (1967). “The relativistic position operator at subatomic level,”Nuovo Cimento 49, 285.

  33. Cawley, R. G. (1973). “Galilei-invariant single-particle action,”Nuovo Cimento B 16, 173.

  34. Chodos, A., Hauser, A. I., and Kostelecky, V. A. (1985). “The neutrino as a tachyon,”Phys. Lett. B 150, 431.

  35. Collins, R. E. (1977a). “Quantum theory: a Hilbert space formalism for probability theory,”Found. Phys. 7, 475.

  36. Collins, R. E. (1977b). “The mathematical basis of quantum mechanics,”Nuovo Cimento Lett. 18, 581.

  37. Collins, R. E. (1979). “The mathematical basis of quantum mechanics: II,”Nuovo Cimento Lett. 25, 473.

  38. Collins, R. E., and Fanchi, J. R. (1978). “Relativistic quantum mechanics: a space-time formalism for spin-zero particles,”Nuovo Cimento 48, 314.

  39. Cook, J. L. (1972a). “Solutions of the relativistic two-body problem. I. Classical mechanics,”Aust. J. Phys. 25, 117.

  40. Cook, J. L. (1972b). “Solutions of the relativistic two-body problem. II. Quantum mechanics,”Aust. J. Phys. 25, 141.

  41. Cooke, J. H. (1968). “Proper-time formulation of quantum mechanics,”Phys. Rev. 166, 1293.

  42. Corben, H. C. (1961). “Spin in classical and quantum theory,”Phys. Rev. 121, 1833.

  43. Corben, H. C. (1968).Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco).

  44. Corns, R. A., and Osborn, T. A. (1990). “Propagators for relativistic systems with non-Abelian interactions,”J. Math. Phys. 31, 901.

  45. Crater, H. W., and van Alstine, P. (1987). “Two-body Dirac equations for particles interacting through world scalar and vector potentials,”Phys. Rev. D 36, 3007.

  46. Cronstrom, C. (1980). “A simple and complete Lorentz-covariant gauge condition,”Phys. Lett. B 90, 267.

  47. Cufaro-Petroni, N., and Vigier, J. P. (1979). “Causal superluminal interpretation of the Einstein-Podolsky-Rosen paradox,”Lett. Nuovo Cimento 26, 149.

  48. Cufaro-Petroni, N., Dewdney, C., Holland, P. R., and Kyprianidis, A., and Vigier, J. P. (1985). “Realistic physical origin of the equantum observable operator algebra in the frame of the causal stochastic interpretation of quantum mechanics: the relativistic spin-zero case,”Phys. Rev. D 32, 1375.

  49. Currie, D. G., Jordan, T. F., and Sudarshan, E. C. G. (1963). “Relativistic invariance and Hamiltonian theories of interacting particles,”Rev. Mod. Phys. 35, 350.

  50. Damgaard, P. H., and Huffel, H. (1987). “Stochastic Quantization,”Phys. Rep. 152, 227.

  51. Damour, T. (1986). “Strong field effects in general relativity,”Helv. Phys. Acta 59, 292.

  52. Davidon, W. C. (1955a). “Proper-time electron formalism,”Phys. Rev. 97, 1131.

  53. Davidon, W. C. (1955b). “Proper-time quantum electrodynamics,”Phys. Rev. 97, 1139.

  54. Davis, J., Unwin, S. C., and Muxlow, T. W. B. (1991). “Large-scale superluminal motion in the quasar 3C273,”Nature (London) 354, 374.

  55. Dewdney, C., Holland, P. R., Kyprianidis, A., and Vigier, J. P. (1985). “Causal action at a distance in a relativistic system of two bound charged spinless particles: hydrogenlike models,”Phys. Rev. D 31, 2533.

  56. Dewdney, C., Holland, P. R., Kyprianidis, A., Marie, Z., and Vigier, J. P. (1986a). “Stochastic physical origin of the quantum operator algebra and phase space interpretation of the Hilbert space formalism: the relativistic spin zero case,”Phys. Lett. A 113, 359.

  57. Dewdney, C., Holland, P. R., Kyprianidis, A., and Vigier, J. P. (1986b). “Relativistic Wigner function as the expectation value of the PT operator,”Phys. Lett. A 114, 440.

  58. DeWitt, B. S. (1975). “Quantum field theory in curved spacetime,”Phys. Rep. 19, 295.

  59. Dirac, P. A. M. (1949). “Forms of relativistic dynamics,”Rev. Mod. Phys. 21, 392.

  60. Dirac, P. A. M. (1951). “Is there an aether?”Nature (London)168, 906.

  61. Dirac, P. A. M. (1953). “The Lorentz transformation and absolute time,”Physica 19, 888.

  62. Di Vecchia, P., and Ravndal, F. (1979). “Supersymmetric Dirac particles,”Phys. Lett. A 73, 371.

  63. Droz-Vincent, Ph. (1979). “Action at a distance and relativistic wave equations for spinless quarks,”Phys. Rev. D 19, 702.

  64. Droz-Vincent, Ph. (1980). “Relativistic quantum theory of scattering,”Nuovo Cimento A 58, 355.

  65. Droz-Vincent, Ph. (1982a). “The multitime covariant formalism of relativistic dynamics,” inRelativistic Action at a Distance: Classical and Quantum Aspects (Lecture Notes in Physics162), J. Llosa, ed. (Springer, Berlin), p. 75.

  66. Droz-Vincent, Ph. (1982b). “Wave operators for relativistic two-body systems with central interaction,”Lett. Nuovo Cimento 33, 383.

  67. Droz-Vincent, Ph. (1984). “Two-body relativistic scattering of directly interacting particles,”Phys. Rev. D 29, 687.

  68. Droz-Vincent, Ph. (1987). “Relativistic mechanics with particle creation,” inConstraints Theory and Relativistic Dynamics, G. Longhi and L. Lusanna, eds. (World Scientific, Singapore).

  69. Droz-Vincent, Ph. (1988). “Proper time and evolution in quantum mechanics,”Phys. Lett. A 134, 147.

  70. Droz-Vincent, Ph. (1990). “Neutral relativistic two-body problem in constant magnetic field,”Phys. Lett. A 147, 406.

  71. Dubovikov, M. S., and Smilga, A. V. (1981). “Analytical properties of the quark polarization operator in an external self-dual field,”Nucl. Phys. B 185, 109.

  72. Ellis, J. R. (1981). “‘Proper time’ and the Dirac equation,”J. Phys. A 14, 2917.

  73. Enatsu, H. (1954a). “Mass spectrum of elementary particles I,”Prog. Theor. Phys. 11, 125.

  74. Enatsu, H. (1954b). “Mass spectrum of elementary particles II,”Prog. Theor. Phys. 12, 363.

  75. Enatsu, H. (1956). “Relativistic quantum mechanics and mass-quantization,”Suppl. Nuovo Cimento 3, 526.

  76. Enatsu, H. (1963). “Relativistic Hamiltonian formalism in quantum field theory and micrononcausality,”Prog. Theor. Phys. 30, 236.

  77. Enatsu, H. (1968). “Covariant Hamiltonian formalism for particles of any spin and nonzero mass,”Nuovo Cimento 58, 891.

  78. Enatsu, H. (1971). “Micro-noncausal theory of the hydrogen atom,” Memoirs of the Research Institute of Science and Engineering, Ritsumeikan University, Kyoto, Japan.

  79. Enatsu, H. (1986). “Quantization of masses of elementary particles with micrononcausal structures,”Nuovo Cimento A 95, 269; Erratum,Nuovo Cimento A 97, 595 (1987).

  80. Enatsu, H., and Ihara, C. (1955). “Models of hyperons,”Nuovo Cimento 1, 394.

  81. Enatsu, H., and Kawaguchi, S. (1975). “Covariant Hamiltonian formalism for quantized fields and the hydrogen mass levels,”Nuovo Cimento 27, 458.

  82. Enatsu, H., Takenaka, A., and Okazaki, M. (1978). “Micrononcausal Euclidean wave functions for hadrons,”Nuovo Cimento 43, 575.

  83. Evans, A. B. (1989). “Four-space formulation of Dirac's equation,”Found. Phys. Lett. 2, 499.

  84. Evans, A. B. (1990). “Four-space formulation of Dirac's equation,”Found. Phys. 20, 309.

  85. Evans, A. B. (1991). “Klein's paradox in a four-space formulation of Dirac's equation,”Found. Phys. 21, 633.

  86. Falk, G. (1952). “A canonical formulation of relativistic mechanics and its quantum theoretic analog,”Z. Phys. 132, 44.

  87. Fanchi, J. R. (1979). “A generalized quantum field theory,”Phys. Rev. D 20, 3108.

  88. Fanchi, J. R. (1981a). “Critique of conventional relativistic quantum mechanics,”Am. J. Phys. 49, 850.

  89. Fanchi, J. R. (1981b). “4-space formulation of field equations for multicomponent eigenfunctions,”J. Math. Phys. 22, 794.

  90. Fanchi, J. R. (1981c). “Resolution of the Klein paradox for spin-1/2 particles,”Found. Phys. 11, 493.

  91. Fanchi, J. R. (1986). “Parametrizing relativistic quantum mechanics,”Phys. Rev. A 34, 1677.

  92. Fanchi, J. R. (1987). “Entropy and time(s),”Phys. Rev. A 35, 4859.

  93. Fanchi, J. R. (1988). “Cosmological implications of the Gibbs ensemble in parametrized relativistic classical mechanics,”Phys. Rev. A 37, 3956.

  94. Fanchi, J. R. (1990). “Tachyon kinematics in parametrized relativistic quantum mechanics,”Found. Phys. 20, 189.

  95. Fanchi, J. R., and Collins, R. E. (1978). “Quantum mechanics of relativistic spinless particles,”Found. Phys. 8, 851.

  96. Fanchi, J. R., and Wilson, W. J. (1983). “Relativistic many-body systems: evolution-parameter formalism,”Found. Phys. 13, 571.

  97. Feynman, R. P. (1948a). “A relativistic cut-off for classical electrodynamics,”Phys. Rev. 74, 939.

  98. Feynman, R. P. (1948b). “Space-time approach to non-relativistic quantum mechanics,”Rev. Mod. Phys. 20, 367.

  99. Feynman, R. P. (1949a). “The theory of positrons,”Phys. Rev. 76, 749.

  100. Feynman, R. P. (1949b). “Space-time approach to quantum electrodynamics,”Phys. Rev. 76, 769.

  101. Feynman, R. P. (1950). “Mathematical formulation of the quantum theory of electromagnetic interaction,”Phys. Rev. 80, 440.

  102. Feynman, R. P. (1951). “An operator calculus having applications in quantum electrodynamics,”Phys. Rev. 84, 108.

  103. Feynman, R. P., Kislinger, M., and Ravndal, F. (1971): “Current matrix elements from a relativistic quark model,”Phys. Rev. D 3, 2706.

  104. Fock, V. (1937). “The proper time in classical and quantum mechanics,”Phys. Z. Sowjetunion 12, 404.

  105. Francisco, G. (1986). “The behavior of the gravitational field near the initial singularity,”Gen. Relativ. Gravit. 18, 287.

  106. Fujii, T. (1988). “Quantization of the mass of the Z-boson in the Weinberg-Salam theory,”Nuovo Cimento A 100, 803.

  107. Fujii, T., and Enatsu, H. (1988). “Quantization of the mass of the W-boson in the Weinberg-Salam theory,”Nuovo Cimento A 99, 783.

  108. Garrod, C. (1966). “Hamiltonian path-integral methods,”Rev. Mod. Phys. 38, 483.

  109. Garrod, C. (1968). “Covariant Hamiltonian dynamics with interactions,”Phys. Rev. 167, 1143.

  110. Garuccio, A., Kyprianidis, A., and Vigier, J. P. (1984). “Relativistic predictive quantum potential: the N-body case,”Nuovo Cimento B 83, 135.

  111. Gilson, J. G. (1968). “On stochastic theories of quantum mechanics,”Proc. Cambridge Philos. Soc. 64, 1061.

  112. Greenberger, D. M. (1963). “The scale transformation in physics,”Ann. Phys. (N.Y.)25, 290.

  113. Greenberger, D. M. (1970a). “Theory of particles with variable mass. I. Formalism,”J. Math. Phys. 11, 2329.

  114. Greenberger, D. M. (1970b). “Theory of particles with variable mass. II. Some physical consequences,”J. Math. Phys. 11, 2341.

  115. Greenberger, D. M. (1974a). “Some useful properties of a theory of variable mass particles,”J. Math. Phys. 15, 395.

  116. Greenberger, D. M. (1974b). “Wavepackets for particles of indefinite mass,”J. Math. Phys. 15, 406.

  117. Greenberger, D. M. (1988). “The equivalence principle meets the uncertainty principle,”Ann. Inst. Henri Poincaré 49, 307.

  118. Grelland, H. H. (1981). “An Einstein relativistic atomic and molecular model based on the Horwitz-Piron-Reuse theory,”Intl. J. Quant. Chem. 19, 873.

  119. Guerra, F., and Mana, R. (1983). “Origin of the quantum observable operator algebra in the frame of stochastic mechanics,”Phys. Rev. D 28, 1916.

  120. Guerra, F., and Ruggiero, P. (1978). “A note on relativistic Markov processes,”Lett. Nuovo Cimento 23, 529.

  121. Hamaguchi, M. (1954). “The generalization of Stueckelberg's formalism in the theory of quantized field,”Prog. Theor. Phys. 11, 461.

  122. Hartle, J. B., and Hawking, S. W. (1976). “Path-integral derivation of black-hole radiance,”Phys. Rev. D 13, 2188.

  123. Herdegen, A. (1982). “A model of relativistic quantum mechanics,”Acta Phys. Pol. B 13, 863.

  124. Holland, P. R., Kyprianidis, A., and Vigier, J. P. (1987). “Trajectories and causal phase-space approach to relativistic quantum mechanics,”Found. Phys. 17, 531.

  125. Horsley, R., and Schoenmaker, W. (1985). “Fermions and stochastic quantization,”Phys. Rev. D 31, 822.

  126. Horwitz, L. P. (1984). “On the electromagnetic interaction in relativistic quantum mechanics,”Found. Phys. 14, 1027.

  127. Horwitz, L. P., and Arshansky, R. (1982). “On relativistic quantum theory for particles with spin 1/2,”J. Phys. A 15, L659.

  128. Horwitz, L. P., and Lavie, Y. (1982). “Scattering theory in relativistic quantum mechanics,”Phys. Rev. D 26, 819.

  129. Horwitz, L. P., and Piron, C. (1973). “Relativistic dynamics,”Helv. Phys. Acta 46, 316.

  130. Horwitz, L. P., and Rabin, Y. (1976). “Relativistic diffraction,”Lett. Nuovo Cimento 17, 501.

  131. Horwitz, L. P., and Rohrlich, F. (1981). “Constraint relativistic quantum dynamics,”Phys. Rev. D 24, 1528.

  132. Horwitz, L. P., and Rohrlich, F. (1982). “Scattering in constraint relativistic quantum dynamics,”Phys. Rev. D 26, 3452.

  133. Horwitz, L. P., and Rohrlich, F. (1985). “Limitations of constraint dynamics,”Phys. Rev. D 31, 932.

  134. Horwitz, L. P., and Rotbart, F. C. (1981). “Nonrelativistic limit of relativistic quantum mechanics,”Phys. Rev. D 24, 2127.

  135. Horwitz, L. P., and Soffer, A. (1980). “On the existence of the wave operator in relativistic quantum scattering theory,”Helv. Phys. Acta 53, 112.

  136. Horwitz, L. P., and Usher, M. (1991). “Localizability and causal propagation in relativistic quantum mechanics,”Found. Phys. Lett. 4, 289.

  137. Horwitz, L. P., Piron, C., and Reuse, F. (1975). “Relativistic dynamics for the spin 1/2 particle,”Helv. Phys. Acta 48, 546.

  138. Horwitz, L. P., Schieve, W. C., and Piron, C. (1981). “Gibbs ensembles in relativistic classical and quantum mechanics,”Ann. Phys. (N.Y.)137, 306.

  139. Horwitz, L. P., Arshansky, R. I., and Elitzur, A. C. (1988). “On the two aspects of time: the distinction and its implications,”Found. Phys. 18, 1159.

  140. Horwitz, L. P., Shashoua, S., and Schieve, W. C. (1989). “A manifestly covariant relativistic Boltzmann equation for the evolution of a system of events,”Physica A 161, 300.

  141. Hostler, L. (1980). “Quantum field theory of particles of indefinite mass. I,”J. Math. Phys. 21, 2461.

  142. Hostler, L. (1981). “Quantum field theory of particles of indefinite mass. II. An electromagnetic model,”J. Math. Phys. 22, 2307.

  143. Hostler, L. (1985). “Quantum theory of particles of indefinite mass: spin-1/2,”J. Math. Phys. 26, 2666.

  144. Iranzo, V., Llosa, J., Molina, A., and Marques, F. (1983). “Comparison of several approaches to the relativistic dynamics of directly interacting particles,”Ann. Phys. (N.Y.)150, 114.

  145. Itoh, C., Kenmoku, M., and Minamikawa, T. (1971). “Canonical quantization of the proper time formalism in the dual resonance model,”Prog. Theor. Phys. 45, 1607.

  146. Johnson, J. E. (1969). “Position operators and proper time in relativistic quantum mechanics,”Phys. Rev. 181, 1755.

  147. Johnson, J. E. (1971). “Proper-time quantum mechanics. II,”Phys. Rev. D 3, 1735.

  148. Johnson, J. E., and Chang, K. K. (1974). “Exact diagonalization of the Dirac Hamiltonian in an external field,”Phys. Rev. D 10, 2421.

  149. Kaloyerou, P. N., and Vigier, J. P. (1989). “Evolution time Klein-Gordon equation and derivation of its nonlinear counterpart,”J. Phys. A 22, 663.

  150. Karplus, R., and Klein, A. (1952). “Electrodynamic displacement of atomic energy levels. I. Hyperfine structure,”Phys. Rev. 85, 972.

  151. Karplus, R., Klein, A., and Schwinger, J. (1952). “Electrodynamic displacement of atomic energy levels. II. Lamb shift,”Phys. Rev. 86, 288.

  152. Katayama, Y. (1951). “On the positron theory of vacuum,”Prog. Theor. Phys. 6, 309.

  153. Katayama, Y., Sawada, K., and Takagi, S. (1950): “Five-dimensional approach to regularized quantum electrodynamics,”Prog. Theor. Phys. V, 14.

  154. Kim, Y. S., and Noz, M. E. (1986).Theory and Applications of the Poincaré Group (Reidel, Dordrecht-Boston).

  155. King, M. J., and Rohrlich, F. (1980). “Relativistic Hamiltonian dynamics. II. Momentum-dependent interactions, confinement and quantization,”Ann. Phys. (N.Y.)130, 350.

  156. Klein, O. (1929). “The reflection of an electron at a potential well in the relativistic dynamics of Dirac,”Z. Phys. 53, 157.

  157. Kubo, R. (1985). “Five-dimensional formulation of quantum field theory with an invariant parameter,”Nuovo Cimento A 85, 293.

  158. Kuhn, T. S. (1970).The Structure of a Scientific Revolution (University of Chicago Press, Chicago).

  159. Kyprianidis, A. (1987). “Scalar time parametrization of relativistic quantum mechanics: the covariant Schrödinger formalism,”Phys. Rep. 155, 1.

  160. Kyprianidis, A., and Sardelis, D. (1984). “A H-theorem in the causal stochastic interpretation of quantum mechanics,”Lett. Nuovo Cimento 39, 337.

  161. Land, M. C., and Horwitz, L. P. (1991). “Green's functions for off-shell electromagnetism and spacelike correlations,”Found. Phys. 21, 299.

  162. Lebedev, S. L. (1986). “Gamow states and imaginary proper time in Fock-Stueckelberg relativistic quantum mechanics,”Sov. J. Nucl. Phys. 42, 880.

  163. Lee, C., Lee, T., and Min, H. (1989). “Generalized Schwinger-DeWitt expansions and effective field theories,”Phys. Rev. D 39, 1701.

  164. Leutwyler, H. (1965). “A no-interaction theorem in classical relativistic Hamiltonian mechanics,”Nuovo Cimento 37, 556.

  165. Llosa, J., editor (1982).Relativistic Action at a Distance: Classical and Quantum Aspects (Lecture Notes in Physics162) (Springer-Verlag, Berlin).

  166. Lopez, C. A., and Perez, M. A. (1981). “Extension of a space-time formalism in relativistic quantum mechanics,”Lett. Nuovo Cimento 30, 173.

  167. Maddox, J. (1987). “Making quantum mechanics relativistic,”Nature (London) 330, 203.

  168. Mano, K. (1955). “The self-energy of the scalar nucleon,”Prog. Theor. Phys. 14, 435.

  169. Manogue, C. A. (1988). “The Klein paradox and superradiance,”Ann. Phys. (N.Y.) 181, 261.

  170. Marnelius, R. (1982). “Introduction to the quantization of general gauge theories,”Acta Phys. Pol. B 13, 669.

  171. Miller, D. E., and Suhonen, E. (1982). “Relativistic ensembles and the mass spectrum,”Phys. Rev. D 26, 2944.

  172. Miura, T. (1979). “Relativistic path integrals,”Prog. Theor. Phys. 61, 1521.

  173. Miyamoto, Y. (1970). “Veneziano model and proper-time formulation,”Prog. Theor. Phys. 43, 564.

  174. Molzahn, F. H., Osborn, T. A., and Fulling, S. A. (1990). “Gauge invariant asymptotic expansion of Schrödinger propagators on manifolds,”Ann. Phys. (N.Y.)204, 64.

  175. Morette, C. (1951). “On the definition and approximation of Feynman's path integral,”Phys. Rev. 81, 848.

  176. Moses, H. E. (1969). “Covariant space-time operators, infinite-component wavefunctions, and proper-time Schrödinger equations,”Ann. Phys. (N.Y.)52, 444.

  177. Moylan, P. (1983). “Unitary representations of the (4+1)-de Sitter group on irreducible representation spaces of the Poincaré group,”J. Math. Phys. 24, 2706.

  178. Nagano, T. (1959). “Quantum field theory in terms of Euclidean parameters,”Prog. Theor. Phys. 21, 241.

  179. Nakagomi, T. (1988). “Relativistic random walks intrinsic to the walker,”Prog. Theor. Phys. 80, 1988.

  180. Nakagomi, T. (1989). “Relativistic random motion parametrized by observer's time,”Prog. Theor. Phys. 81, 916.

  181. Nambu, Y. (1950). “The use of the proper time in quantum electrodynamics I.,”Prog. Theor. Phys. V, 82.

  182. Namsrai, Kh. (1981). “A stochastic model for the motion of two relativistic particles,”J. Phys. A 14, 1307.

  183. Namsrai, Kh. (1986).Non-local Quantum Field Theory and Stochastic Quantum Mechanics (Reidel, Dordrecht).

  184. Nelson, E. (1966). “Derivation of the Schrödinger equation from Newtonian mechanics,”Phys. Rev. 150, 1079.

  185. Nelson, E. (1967).Dynamical Theories of Brownian Motion (Princeton University Press, Princeton).

  186. Nelson, E. (1985).Quantum Fluctuations (Princeton University Press, Princeton).

  187. Noga, M. (1970). “Critique of a proposed dynamical group for relativistic quantum mechanics,”Phys. Rev. D 2, 304.

  188. Omote, M., Kamafuchi, S., Takahashi, Y., and Ohnuki, Y. (1989). “Galilean invariance and the Schrödinger equation,”Fortsch. Phys. 37, 933.

  189. Parisi, G., and Wu, Y.-S. (1981). “Perturbation theory without gauge fixing,”Sci. Sin. 24, 483.

  190. Pauli, W., and Villars, F. (1949). “On the invariant regularization in relativistic quantum theory,”Rev. Mod. Phys. 21, 434.

  191. Pavsic, M. (1984). “On the quantization of the world-line,”Nuovo Cimento A 82, 443.

  192. Pavsic, M. (1985). “On the quantization of gravity by embedding spacetime in a higher dimensional space,”Class. Quantum Gravit. 2, 869.

  193. Pavsic, M. (1986). “Canonical formalism and quantization of world-line in a curved background metric,”Nuovo Cimento A 93, 291.

  194. Pavsic, M. (1987). “Phase space action for minimal surfaces of any dimension in curved spacetime,”Phys. Lett. B 197, 327.

  195. Pavsic, M. (1991a). “On the interpretation of the relativistic quantum mechanics with invariant evolution parameter,”Found. Phys. 21, 1005.

  196. Pavsic, M. (1991b). “Relativistic quantum mechanics and quantum field theory with invariant evolution parameter,”Nuovo Cimento A 104, 1337.

  197. Pearle, P. M. (1968). “Relativistic classical mechanics with time as a dynamical variable,”Phys. Rev. 168, 1429.

  198. Piron, C., and Reuse, F. (1978). “Relativistic dynamics for the spin 1/2 particle,”Helv. Phys. Acta 51, 146.

  199. Plyushchay, M. S. (1990). “Relativistic particle with arbitrary spin in a non-grassmannian approach,”Phys. Lett. B 248, 299.

  200. Rafanelli, K., and Schiller, R. (1964). “Classical motions of spin-1/2 particles,”Phys. Rev. 135, B279.

  201. Ravndal, F. (1980). “Supersymmetric Dirac particles in external fields,”Phys. Rev. D 21, 2823.

  202. Reuse, F. (1978). “A new relativistic model for the hydrogen atom,”Helv. Phys. Acta 51, 157.

  203. Reuse, F. (1979). “On classical and quantum relativistic dynamics,”Found. Phys. 9, 865.

  204. Reuse, F. (1980a). “A relativistic two-body model for hydrogen-like and positronium-like systems I,”Helv. Phys. Acta 53, 416 (spin not considered).

  205. Reuse, F. (1980b). “A relativistic two-body model for hydrogen-like and positronium-like systems II,”Helv. Phys. Acta 53, 552 (spin considered).

  206. Rohrlich, F. (1979). “Relativistic Hamiltonian dynamics. I. Classical mechanics,”Ann. Phys. (N.Y.)117, 292.

  207. Rohrlich, F. (1982a). “Constraint Relativistic canonical particle dynamics,” inRelativistic Action at a Distance: Classical and Quantum Aspects (Lecture Notes in Physics162), J. Llosa, ed. (Springer-Verlag, Berlin), p. 190.

  208. Rohrlich, F. (1982b). “Evolution and covariance in constraint dynamics,”Phys. Rev. D 25, 2576.

  209. Rumpf, H. (1983). “Mass-analytic quantization, uniform acceleration, and black-hole space-time,”Phys. Rev. D 28, 2946.

  210. Saad, D., Horwitz, L. P., and Arshansky, R. I. (1989). “Off-shell electromagnetism in manifestly covariant relativistic quantum mechanics,”Found. Phys. 19, 1125.

  211. Salpeter, E. E., and Bethe, H. A. (1951). “A relativistic equation for bound-state problems,”Phys. Rev. 84, 1232.

  212. Salisbury, D. C., and Pollot, M. (1989). “Quantum relativistic action at a distance,”Found. Phys. 19, 1441.

  213. Samuel, J. (1982a). “Constraints in relativistic Hamiltonian mechanics,”Phys. Rev. D 26, 3475.

  214. Samuel, J. (1982b). “Relativistic particle models with separable interactions,”Phys. Rev. D 26, 3482.

  215. Sazdjian, H. (1987). “The connection of two-particle relativistic quantum mechanics with the Bethe-Salpeter equation,”J. Math. Phys. 28, 2618.

  216. Scadron, M. D. (1979).Advanced Quantum Theory and Its Applications Through Feynman Diagrams (Springer, New York).

  217. Schieve, W. C., and Horwitz, L. P. (1991). “Chaos in the classical relativistic mechanics of a damped Duffing-like driven system,”Phys. Lett. A 156, 140.

  218. Schonberg, M. (1954). “A non-linear generalization of the Schrödinger and Dirac equations,”Nuovo Cimento 11, 674.

  219. Schwinger, J. (1951). “On gauge invariance and vacuum polarization,”Phys. Rev. 82, 664.

  220. Schwinger, J. (1959). “Euclidean quantum electrodynamics,”Phys. Rev. 115, 721.

  221. Serva, M. (1988). “Relativistic stochastic processes associated to Klein-Gordon equation,”Ann. Inst. Henri Poincaré 49, 415.

  222. Shifman, M. A. (1980). “Wilson loop in vacuum fields,”Nucl. Phys. B 173, 13.

  223. Shirafuji, T. (1970). “Off-shell functions of the dual-resonance,”Prog. Theor. Phys. 44, 823.

  224. Shirafuji, T. (1971). “Generalized transformation functional of a continuum model of the dual amplitude,”Prog. Theor. Phys. 46, 1218.

  225. Steeb, W.-H., and Miller, D. E. (1982). “Relativistic classical mechanics and canonical formalism,”Found. Phys. 12, 531.

  226. Stephens, C. R. (1988). “Non-perturbative background field calculations,”Ann. Phys. (N.Y.)181, 120.

  227. Stephens, C. R. (1989). “The Hawking effect in abelian gauge theories,”Ann. Phys. (N.Y.)193, 255.

  228. Stueckelberg, E. C. G. (1941a). “A new model of the ‘punctual’ electron in classical theory,”Helv. Phys. Acta 14, 51.

  229. Stueckelberg, E. C. G. (1941b). “The significance of proper time in wave mechanics,”Helv. Phys. Acta 14, 322.

  230. Stueckelberg, E. C. G. (1941c). “Remarks about the creation of pairs of particles in the theory of relativity,”Helv. Phys. Acta 14, 588.

  231. Stueckelberg, E. C. G. (1942). “The mechanics of point particles in the theory of relativity and the quantum theory,”Helv. Phys. Acta 15, 23.

  232. Sundermeyer, K. (1982).Constrained Dynamics (Lecture Notes in Physics169) (Springer, Berlin).

  233. Szamosi, G. (1961). “A covariant formulation of quantum mechanics. I,”Nuovo Cimento 20, 1090.

  234. Takano, Y. (1961). “The singularity of propagators in field theory and the structure of space-time,”Prog. Theor. Phys. 26, 304.

  235. Takenaka, A. (1986). “Micrononcausal Euclidean wave functions for mesons by assuming ‘Yukawa Type’ couplings,”Nuovo Cimento A 94, 367.

  236. Takenaka, A. (1989). “Micrononcausal Euclidean wave functions for hadrons in the quark model,”Nuovo Cimento A 101, 631.

  237. Takenaka, A. (1990). “Micrononcausal Euclidean wave functions for quarks and leptons,”Nuovo Cimento A 103, 1711.

  238. Tetrode, H. (1922). “About the action principle (connection) of the world. An expansion of classical dynamics,Z. Phys. 10, 317.

  239. Thaller, B. (1981). “Proper-time quantum-mechanics and the Klein paradox,”Lett. Nuovo Cimento 31, 439.

  240. Todorov, I. T. (1982). “Constraint Hamiltonian mechanics of directly interacting relativistic particles,” inRelativistic Action at a Distance: Classical and Quantum Aspects (Lecture Notes in Physics162), J. Llosa, ed. (Springer, Berlin), p. 213.

  241. Valatin, J. G. (1954). “Singularities of electron kernel functions in an external electromagnetic field,”Proc. R. Soc. London A 222, 93.

  242. Vatsya, S. R. (1989). “Gauge-theoretical origin of mechanics,”Can. J. Phys. 67, 634.

  243. Vigier, J. P. (1979). “Model of quantum statistics in terms of a fluid with irregular stochastic fluctuations propagating at the velocity of light: a derivation of Nelson's equations,”Lett. Nuovo Cimento 24, 265.

  244. Vigier, J. P. (1991). “Explicit mathematical construction of relativistic nonlinear de Broglie waves described by three-dimensional (wave and electromagnetic) solitons ‘piloted’ (controlled) by corresponding solutions of associated linear Klein-Gordon and Schrödinger equations,”Found. Phys. 21, 125.

  245. Wall, E. L. (1989). “On pion resonances and mesons, time cancellation, and neutral particles,”Hadronic J. 12, 309.

  246. Wergeland, H. (1982). “The Klein paradox revisited,” inOld and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology, A. van der Merwe, ed. (Plenum, New York), p. 503.

  247. Wong, S. K. (1972). “Heisenberg equations of motion for spin-1/2 wave equation in general relativity,”Int. J. Theor. Phys. 5, 221.

  248. Yang, C. N., and Mills, R. L. (1954). “Conservation of isotopic spin and isotopic gauge invariance,”Phys. Rev. 96, 191.

  249. Yasue, K. (1977). “Derivation of relativistic wave equations in the theory of elementary domains,”Prog. Theor. Phys. 57, 318.

  250. Zuk, J. A. (1986). “Covariant-derivative expansion of the effective action and the Schwinger-Fock gauge condition,”Phys. Rev. D 34, 1791.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fanchi, J.R. Review of invariant time formulations of relativistic quantum theories. Found Phys 23, 487–548 (1993).

Download citation


  • Proper Time
  • Time Formulation
  • Relativistic Dynamic
  • Time Method
  • Evolution Parameter