Foundations of Physics

, Volume 23, Issue 2, pp 197–210 | Cite as

Barut equation for the particle-antiparticle system with a Dirac oscillator interaction

  • M. Moshinsky
  • G. Loyola
Part I. Invited Papers Dedicated To Asim Orhan Barut


Barut showed us how it is possible to get a Poincaré invariant n-body equation with a single time. Starting from the Barut equation for n-free particles, we show how to generalize it when they interact through Dirac oscillators with different frequencies. We then particularize the problem to n=2 and consider the particle-antiparticle system whose frequencies are respectively ω and −ω. We indicate how the resulting equation can be solved by perturbation theory, though the spectrum and its comparison with that of the mesons will be given in another publication.


Perturbation Theory Single Time Dirac Oscillator Oscillator Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. O. Barut and S. Komy,Fortsch. Phys. 33, 6 (1985); A. O. Barut and G. L. Strobel,Few Body Systems 1, 167 (1986).Google Scholar
  2. 2.
    M. Moshinsky, G. Loyola, and C. Villegas,J. Math. Phys. 32, 373 (1991).Google Scholar
  3. 3.
    M. Moshinsky and A. Szczepaniak,J. Phys. A: Math. Gen. 22, L817 (1989).Google Scholar
  4. 4.
    M. Moshinsky, G. Loyola, and A. Szczepaniak, inJ. J. Giambiagi Festschrift, H. Falomiret al., eds. (World Scientific, Singapore, 1990), pp. 324–349.Google Scholar
  5. 5.
    Y. S. Kim and M. E. Noz,Theory and Application of the Poincaré Group (Reidel, Dordrecht, 1986), pp. 55, 61, 69.Google Scholar
  6. 6.
    L. I. Schiff,Quantum Mechanics, 3rd edn. (McGraw-Hill, New York, 1968), p. 272.Google Scholar
  7. 7.
    J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964), pp. 66–68.Google Scholar
  8. 8.
    M. E. Rose,Elementary Theory of Angular Momentum (Wiley, New York, 1957), pp. 115–119.Google Scholar
  9. 9.
    L. I. Schiff, loc. cit. pp. 244–247.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • M. Moshinsky
    • 1
  • G. Loyola
    • 1
  1. 1.Instituto de Física, UNAMMéxicoD.F. México

Personalised recommendations