Foundations of Physics

, Volume 20, Issue 5, pp 529–559 | Cite as

Hilbert lattices: New results and unsolved problems

  • Herbert Gross
Part I. Invited Papers Dedicated To The Memory Of Charles H. Randall (1928–1987)


The class of Hilbert lattices that derive from orthomodular spaces containing infinite orthonormal sets (normal Hilbert lattices) is investigated. Relevant open problems are listed. Comments on form-topological orthomodular spaces and results on arbitrary orthomodular spaces are appended.


Open Problem Unsolved Problem Hilbert Lattice Orthomodular Space Relevant Open Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Artin,Geometric Algebra (Interscience, New York, 1957).Google Scholar
  2. 2.
    A. Dvurečenskij, “Converse of the Eilers-Horst theorem,”Int. J. Theor. Phys. 26(7), 609–612 (1987).Google Scholar
  3. 3.
    A. Dvurečenskij and L. Mišík, Jr., “Gleason's theorem and completeness of inner product spaces,”Int. J. Theor. Phys. 27(4), 417–426 (1988).Google Scholar
  4. 4.
    A. Dvurečenskij and Sylvia Pulmannová, “State on splitting subspaces and completeness of inner product spaces,”Int. J. Theor. Phys. 27(9), 1059–1067 (1988).Google Scholar
  5. 5.
    Angela Fässler-Ullmann, “Nonclassical Hilbert spaces,”Expo Math. 1, 275–277 (1983).Google Scholar
  6. 6.
    H. Gross, “Quadratic forms in infinite-dimensional vector spaces,”Progress in Mathematics, Vol. 1 (Birkhäuser, Boston, 1979).Google Scholar
  7. 7.
    H. Gross, “Quadratic forms and Hilbert lattices, Contributions to general algebra,” inProceedings, Vienna Conference, June 21–24, 1984 (Teubner-Verlag, Stuttgart, and Hölder-Pichler-Tempsky, Vienna, 1985), pp. 181–190.Google Scholar
  8. 8.
    H. Gross, “Orthogonal geometry in infinite-dimensional vector spaces,” expanded version of a lecture at the University of Kaiserslautern, June 7, 1986. Preprint, pp. 1–29.Google Scholar
  9. 9.
    H. Gross, “Different orthomodular orthocomplementations on a lattice,”Order 4, 79–92 (1987).Google Scholar
  10. 10.
    H. Gross, “Hilbert lattices with the extension property,”Geometriae Dedicata 29, 153–161 (1989).Google Scholar
  11. 11.
    H. Gross, “On orthomodular spaces. Contributions to general algebra,” inProceedings, Krems Conference, August 21–27, 1988 (North-Holland/Elsevier, Amsterdam, 1989).Google Scholar
  12. 12.
    H. Gross and H. A. Keller, “On the Definition of Hilbert Space,”Manuscripta Math. 23, 67–90 (1977).Google Scholar
  13. 13.
    H. Gross and U.-M. Künzi, “On a class of orthomodular quadratic spaces,”L'Enseignement Mathématique 31, 187–212 (1985).Google Scholar
  14. 14.
    S. S. Holland, Jr., “*-Valuations and ordered *-fields,”Trans. Am. Math. Soc. 262, 219–243 (1980).Google Scholar
  15. 15.
    H. A. Keller, “Una nota sobre espacios de Hilbert,”Notas Matemáticas imuc, Universidad Católica de Chile, Santiago, No. 3, June 1974, pp. 23–32.Google Scholar
  16. 16.
    H. A. Keller, “Ein nicht-klassischer Hilbertscher Raum,”Math. Z. 172, 41–49 (1980).Google Scholar
  17. 17.
    H. A. Keller, three letters to H. Gross (concerning the proof of Theorem I.2.1), dated January 5, 1988, January 10, 1988, and January 12, 1988, respectively.Google Scholar
  18. 18.
    H. A. Keller, letter to H. Gross (proof of Theorem III.3.1), July 1988.Google Scholar
  19. 19.
    U.-M. Künzi, “Orthomodulare Räume über bewerteten Körpern,” Ph.D. Thesis, University of Zürich (1984).Google Scholar
  20. 20.
    F. Maeda and S. Maeda,Theory of Symmetric Lattices (Grundlehren173), (Springer, New York, 1970).Google Scholar
  21. 21.
    R. P. Morash, “Angle bisection and orthoautomorphisms in Hilbert Lattices,”Can. J. Math. 25, 261–272 (1973).Google Scholar
  22. 22.
    Herminia Ochsenius, “Los espacios ortomodulares y el teorema de Kakutani-Mackey,” Tesis para optar al grado académico de Doctor en Ciencias Exactas (Matemática), Pontificia Universidad Católica de Chile, Santiago, in preparation.Google Scholar
  23. 23.
    P. Ribenboim,Théorie des valuations (Presses Université Montréal, Montréal, 1964).Google Scholar
  24. 24.
    P. Ribenboim, “Equivalent forms of Hensel's lemma,”Expo. Math. 3, 3–24 (1985).Google Scholar
  25. 25.
    W. J. Wilbur, “On characterizing the standard quantum logics,”Trans. Am. Math. Soc. 233, 265–282 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Herbert Gross
    • 1
  1. 1.Mathematisches Institut der Universität ZürichZürichSwitzerland

Personalised recommendations