Foundations of Physics

, Volume 19, Issue 8, pp 1017–1025 | Cite as

New dialogue on a new science between F. Salviati, G. Sagredo, and Simplicio

  • Constantin Piron
Part II. Invited Papers Dedicated To Peter Mittelstaedt


In this dialogue we explain why nonrelativistic and relativistic quantum mechanics are basically the same and how the Lorentz group operates canonically only on the dynamics.


Quantum Mechanic Relativistic Quantum Lorentz Group Relativistic Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Lahti and P. Mittelstaedt, eds.,Symposium on the Foundations of Modern Physics (World Scientific, Singapore, 1985).Google Scholar
  2. 2.
    J. M. Jauch,Are Quanta Real? (Indiana University Press, Bloomington, London, 1973).Google Scholar
  3. 3.
    C. Piron, “Paradoxes et mécanique quantique,”Ann. Fond. Louis de Broglie 7, 265 (1982).Google Scholar
  4. 4.
    J. Dixmier, “Sur la relationi(PQ-QP)=1,”Comp. Math. 13, 263 (1958).Google Scholar
  5. 5.
    D. Arnal, “Symmetric non self-adjoint operators in an enveloping algebra,”J. Funct. Anal. 21, 432 (1976).Google Scholar
  6. 6.
    R. Abraham and J. E. Marsden,Foundations of Mechanics (Benjamin/Cummings, Menlo Park, 1978), p. 435.Google Scholar
  7. 7.
    D. Aerts, “Description of many physical entities without the paradoxes encountered in quantum mechanics,”Found. Phys. 12, 1131 (1982).Google Scholar
  8. 8.
    C. Piron, Foundations of Quantum Physics (W. A. Benjamin, London, 1976), p. 93.Google Scholar
  9. 9.
    L.-M. Leblond, “The Galilei Group and...,”J. Math. Phys. 4, 776 (1963).Google Scholar
  10. 10.
    E. Cartan,Leçons sur les invariants intégraux (Hermann, Paris, 1958).Google Scholar
  11. 11.
    A. Messiah,Mécanique quantique (Dunod, Paris, 1959), p. 115.Google Scholar
  12. 12.
    T. Acquinas,Commentary on Aristotle's Physics (Routledge & Kegan Paul, London, 1963), p. 281.Google Scholar
  13. 13.
    G. Emch and C. Piron, “Symmetry in quantum theory,”J. Math. Phys. 4, 469 (1963).Google Scholar
  14. 14.
    C. Flesia and C. Piron: “La théorie de la diffusion de Lax et Phillips dans le cas quantique,”Helv. Phys. Acta 57, 697 (1984).Google Scholar
  15. 15.
    A. O. Barut and N. Ünal, “A new approach to bound-state quantum electrodynamics. II,”Physica 142A, 488 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Constantin Piron
    • 1
  1. 1.Département de Physique ThéoriqueUniversité de GenèveGenève 4Switzerland

Personalised recommendations