Foundations of Physics

, Volume 18, Issue 2, pp 185–223 | Cite as

Stochastic optics: A reaffirmation of the wave nature of light

  • Trevor Marshall
  • Emilio Santos
Part IV. Invited Papers Commemorating The Centenary Of The Birth Of Erwin Schrödinger


Quantum optics does not give a local explanation of the coincidence counts in spatially separated photodetectors. This is the case for a wide variety of phenomena, including the anticorrelated counting rates in the two channels of a beam splitter, the coincident counting rates of the two “photons” in an atomic cascade, and the “antibunching” observed in resonance fluorescence.

We propose a local realist theory that explains all of these data in a consistent manner. The theory uses a completely classical description of the electromagnetic field, but with boundary conditions of the far field that are equivalent to assuming a real fluctuating, zero-point field. It is related to stochastic electrodynamics similarly to the way classical optics is related to classical electromagnetic theory.

The quantitative aspects of the theory are developed sufficiently to show that there is agreement with all experiments performed till now.


Electromagnetic Field Counting Rate Beam Splitter Realist Theory Quantitative Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Schrödinger,Naturwissenschaften 23, 807–812, 823–828; 844–849 (1935). English translation J. D. Trimmer,Proc. Am. Philos. Soc. 124, 323–338 (1980).Google Scholar
  2. 2.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  3. 3.
    J. F. Clauser and A. Shimony,Rep. Prog. Phys. 41, 1881 (1978).CrossRefGoogle Scholar
  4. 4.
    F. Selleri and G. Tarozzi,Riv. Nuovo Cimento 4, 1 (1981).Google Scholar
  5. 5.
    E. Schrödinger,Meine Weltansicht (P. Zsolnay, Hamburg-Wien, 1961).Google Scholar
  6. 6.
    E. Schrödinger,Letters on Wave Mechanics, K. Przibram, ed. (Vision, London, 1967). Letter to Einstein dated November 16, 1950.Google Scholar
  7. 7.
    P. Forman, “Weimar culture, causality and quantum theory,”Historical Studies in the Physical Sciences, Vol. 3 (University of Pennsylvania Press, Philadelphia, 1971).Google Scholar
  8. 8.
    T. W. Marshall, inOpen Questions in Quantum Physics, G. Tarozzi and A. van der Merwe, eds. (Reidel, Dordrecht, 1985), p. 257.Google Scholar
  9. 9.
    M. Born and A. Einstein,The Born-Einstein Letters (Macmillan, London, 1971), pp. 217 to 228, especially p. 221.Google Scholar
  10. 10.
    Ref. 6, letter to Planck dated July 4, 1927.Google Scholar
  11. 11.
    R. P. Feynman,Proceedings, Second Berkeley Symposium on Mathematical Statistics and Probability (University California Press, Los Angeles, 1951).Google Scholar
  12. 12.
    L. de Broglie,The Current Interpretation of Wave Mechanics (Elsevier, Amsterdam, 1964).Google Scholar
  13. 13.
    P. W. Milonni,Phys. Lett. C 25, 1 (1976).Google Scholar
  14. 14.
    E. T. Jaynes, inCoherence and Quantum Optics. IV, L. Mandel and E. Wolf, eds. (Plenum, New York, 1978), p. 495.Google Scholar
  15. 15.
    R. A. Loudon,Opt. Commun. 45, 361 (1983).Google Scholar
  16. 16.
    L. Mandel,Prog. Opt. 13, 27 (1976).Google Scholar
  17. 17.
    R. A. Loudon,Rep. Prog. Phys. 43, 913 (1980).CrossRefGoogle Scholar
  18. 18.
    B. d'Espagnat,Sci. Am., November, 1979.Google Scholar
  19. 19.
    A. Aspect, inThe Ghost in the Atom, P. C. W. Davies and J. R. Brown, eds. (Cambridge University Press, 1986), p. 43.Google Scholar
  20. 20.
    D. Bohm,Phys. Rev. 85, 166 (1952).Google Scholar
  21. 21.
    P. A. M. Dirac, inDirections in Physics, H. Hora and J. R. Shepanski, eds. (Wiley, Sidney, 1976).Google Scholar
  22. 22.
    M. Planck,Wärmestrahlung; English translation:Theory of Heat Radiation (Dover, New York, 1959).Google Scholar
  23. 23.
    G. I. Taylor,Proc. Cambridge Philos. Soc. 15, 114 (1909).Google Scholar
  24. 24.
    L. Janossy and Z. Naray,Acta Phys. Hung. 7 403 (1957).Google Scholar
  25. 25.
    R. L. Pfleegor and L. Mandel,Phys. Rev. 159, 1084 (1967).Google Scholar
  26. 26.
    J. A. Wheeler, “Law without law,” inQuantum Theory of Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, 1983), p. 182.Google Scholar
  27. 27.
    A. Rae,Quantum Physics—Illusion or Reality? (Cambridge University Press, 1986), p. 8.Google Scholar
  28. 28.
    P. C. W. Davies and J. R. Brown,The Ghost in the Atom (Cambridge University Press, 1986), p. 8.Google Scholar
  29. 29.
    A. Adam, L. Janossy, and P. Varga,Acta Phys. Hung. 4, 301 (1955);Ann. Phys. 16, 408 (1955).Google Scholar
  30. 30.
    E. T. Jaynes, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980), p. 37.Google Scholar
  31. 31.
    R. Hanbury-Brown and R. Q. Twiss,Nature (London) 177, 27 (1956).Google Scholar
  32. 32.
    J. F. Clauser,Phys. Rev. D 9, 853 (1974).Google Scholar
  33. 33.
    P. Grangier, G. Roger, and A. Aspect,Europhys. Lett. 1, 173 (1986).Google Scholar
  34. 34.
    C. O. Alley, O. Jakubowicz, C. A. Steggerda, and W. C. Wickes, inProceedings of the International Symposium Foundations of Quantum Mechanics in the Light of New Technology, S. Kamefuchiet al., eds. (Physical Society of Japan, Tokyo, 1983).Google Scholar
  35. 35.
    F. de Martini, report to Conference Quantum Uncertainties, Bridgeport, Connecticut (Plenum, New York, in press).Google Scholar
  36. 36.
    C. O. Alley, O. G. Jakubowicz, and W. C. Wickes,Proceedings Second International Symposium Foundations of Quantum Mechanics (Physical Society of Japan, Tokyo, 1986).Google Scholar
  37. 37.
    W. Heitler,Quantum Theory of Radiation (Clarendon, Oxford, 1954), p. 60.Google Scholar
  38. 38.
    J. W. Goodman,Statistical Optics (Wiley, New York, 1985) Section 6-3.Google Scholar
  39. 39.
    A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 47, 460 (1981); A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 49, 91 (1982); A. Aspect and P. Grangier,Nuovo Cimento Lett. 43, 345 (1985); A. Aspect, J. Dalibard, and G. Roger,Phys. Rev. Lett. 49, 1804 (1982).Google Scholar
  40. 40.
    W. Perrie, A. J. Duncan, H. J. Beyer, and H. Kleinpoppen,Phys. Rev. Lett. 54, 1790 (1985).Google Scholar
  41. 41.
    M. Dagenais and L. Mandel,Phys. Rev. A 18, 2217 (1978).Google Scholar
  42. 42.
    M. S. Chubarov and E. P. Nikolayev,Phys. Lett. A 110, 199 (1985).Google Scholar
  43. 43.
    L. I. Schiff,Quantum Mechanics (McGraw Hill, New York, 1968), Chapter 11.Google Scholar
  44. 44.
    P. L. Knight and L. Allen,Quantum Optics (Pergamon, Oxford, 1983).Google Scholar
  45. 45.
    J. F. Clauser and M. A. Horne,Phys. Rev. D 10, 326 (1974).Google Scholar
  46. 46.
    A. Einstein,Phys. Z.,10, 185 (1909).Google Scholar
  47. 47.
    T. A. Welton,Phys. Rev. 74, 1157 (1948).Google Scholar
  48. 48.
    T. H. Boyer,Ann. Phys. (N.Y.) 56, 474 (1970).Google Scholar
  49. 49.
    P. C. Claverie and S. Diner,Int. J. Quantum Chem. 12 Suppl. 1, 41 (1977).Google Scholar
  50. 50.
    T. H. Boyer, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980), p. 49.Google Scholar
  51. 51.
    L. de la Peña, inStochastic Processes Applied to Physics and Other Related Fields, B. Gomez, S. M. Moore, A. M. Rodriguez-Vargas, and A. Rueda, eds. (World Scientific, Singapore, 1983), p. 428.Google Scholar
  52. 52.
    T. H. Boyer, “The classical vacuum,”Sci. Am., August, 1985.Google Scholar
  53. 53.
    A. Einstein,Phys. Z. 18, 121 (1917).Google Scholar
  54. 54.
    R. Short and L. Mandel,Phys. Rev. Lett. 51, 384 (1983).Google Scholar
  55. 55.
    C. K. Hong and L. Mandel,Phys. Rev. Lett. 54, 323 (1985).Google Scholar
  56. 56.
    T. W. Marshall and E. Santos, University of Cantabria preprint, 1986.Google Scholar
  57. 57.
    T. W. Marshall and E. Santos,Europhys. Lett. 3, 293 (1987).Google Scholar
  58. 58.
    D. Greenberger, inMicrophysical Reality and Quantum Formalism, A. van der Merwe, F. Selleri, and G. Tarozzi, eds. (Reidel, Dordrecht, 1987).Google Scholar
  59. 59.
    F. Selleri, inThe Wave-Particle Dualism, S. Diner, D. Fargue, G. Lochak, and F. Selleri, eds. (Reidel, Dordrecht, 1984), p. 101.Google Scholar
  60. 60.
    J. S. Bell,Physics 1, 195 (1964).Google Scholar
  61. 61.
    E. Santos,Nuovo Cimento B 22, 201 (1974).Google Scholar
  62. 62.
    T. W. Marshall,Nuovo Cimento 38, 206 (1965).Google Scholar
  63. 63.
    E. P. Wigner, inQuantum Theory of Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, 1983), p. 260.Google Scholar
  64. 64.
    A. Peres,Am. J. Phys. 54, 688 (1986).Google Scholar
  65. 65.
    J. G. Cramer,Rev. Mod. Phys. 58, 647 (1986).Google Scholar
  66. 66.
    D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, 1951), Chap. 22.Google Scholar
  67. 67.
    H. Everett,Rev. Mod. Phys. 29, 454 (1957); reproduced in Wheeler and Zurek, Ref. 26.Google Scholar
  68. 68.
    D. Mermin,Proceedings, New Techniques and Ideas in Quantum Measurement Theory (New York, Academy Sciences, New York, 1987).Google Scholar
  69. 69.
    A. Shimony,Brit. J. Philos. Sci. 35, 25 (1984).Google Scholar
  70. 70.
    C. Papaliolos,Phys. Rev. Lett. 18, 622 (1967).Google Scholar
  71. 71.
    J. F. Clauser,Nuovo Cimento B 33, 740 (1976).Google Scholar
  72. 72.
    T. W. Marshall and E. Santos,Phys. Lett. A 107, 164 (1985).Google Scholar
  73. 73.
    H. J. Kimble, M. Dagenais, and L. Mandel,Phys. Rev. A 18, 201 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Trevor Marshall
    • 1
  • Emilio Santos
    • 1
  1. 1.Departamento de Física TeóricaUniversidad de CantabriaSantanderSpain

Personalised recommendations