Advertisement

Archive for History of Exact Sciences

, Volume 47, Issue 1, pp 1–51 | Cite as

Jiu zhang suanshu (nine chapters on the mathematical art): An overview

  • Lam Lay Yong
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bai Shangshu 1983.Jiu zhang suanshu zhushi (Annotations onJiu zhang suanshu). Beijing: Kexue chubanshe.Google Scholar
  2. Berezkina, E. I. 1957. Drevnekitajskij trakat “Matematika v devjati knigach” (The ancient Chinese mathematical work “Nine chapters on the mathematical art”).Istoriko-Matematiceskie Issledovanija 10, 423–584.Google Scholar
  3. Chase, A. B. 1979.The Rhind Mathematical Papyrus. Virginia: The National Council of Teachers of Mathematics.Google Scholar
  4. Cohn, P. M. 1958.Linear Equations. London: Routledge & Kegan Paul.Google Scholar
  5. Cohn, P. M. 1958.Linear Equations. London: Routledge & Kegan Paul.Google Scholar
  6. Gillings, R. J. 1972.Mathematics in the Time of the Pharaohs. Massachusetts: The M.I.T. Press.Google Scholar
  7. Guo Shuchun 1990 (compiled and annotated by).Jiu zhang suanshu (Nine chapters on the mathematical art). Shenyang: Liaoning jiaoyu chubanshe.Google Scholar
  8. Karpinski, L. C. 1925.The History of Arithmetic. Chicago & New York: Rand McNally.Google Scholar
  9. Lam Lay Yong 1974. Yang Hui's commentary on theying nu chapter of theChiu Chang Suan Shu.Historia Mathematica 1, 47–64.Google Scholar
  10. Lam Lay Yong 1986. The conceptual origins of our numeral system and the symbolic form of algebra.Archive for History of Exact Sciences 36, 183–195.Google Scholar
  11. Lam Lay Yong 1987. Linkages: Exploring the similarities between the Chinese rod numeral system and our numeral system.Archive for History of Exact Sciences 37, 365–392.Google Scholar
  12. Lam Lay Yong 1988. A Chinese genesis: Rewriting the history of our numeral system.Archive for History of Exact Sciences 38, 101–108.Google Scholar
  13. Lam Lay Yong &Ang Tian Se 1986. Circle measurements in ancient China.Historia Mathematica 13, 325–340.Google Scholar
  14. Lam Lay Yong &Ang Tian Se 1992.Fleeting Footsteps. Tracing the Conception of Arithmetic and Algebra in Ancient China. Singapore: World Scientific.Google Scholar
  15. Lam Lay Yong &Shen Kangshen 1984. Right-angled triangles in ancient China.Archive for History of Exact Sciences 30, 87–112.Google Scholar
  16. Lam Lay Yong &Shen Kangshen 1985. The Chinese concept of Cavaliere principle and its applications.Historia Mathematica 12, 219–228.Google Scholar
  17. Lam Lay Yong &Shen Kangshen 1986. Mathematical problems on surveying in ancient China.Archive for History of Exact Sciences 36, pp. 1–20.Google Scholar
  18. Lam Lay Yong &Shen Kangshen 1989. Methods of solving linear equations in traditional China.Historia Mathematica 16, 107–122.Google Scholar
  19. Li Yan &Du Shiran 1987.Chinese Mathematics. A Concise History. Translated byJ. N. Crossley &A. W. C. Lun. Oxford: Clarendon Press.Google Scholar
  20. Mikami Y. 1913.The Development of Mathematics in China and Japan. 1st edition in Vol. 30 of “Abhandlungen zur Geschichte der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen begründet von Moritz Cantor” (Leipzig). 2nd edition New York: Chelsea Publishing Company 1974.Google Scholar
  21. Needham, J. 1959.Science and Civilisation in China. Vol. 3:Mathematics and the Sciences of the Heavens and the Earth. Cambridge: Cambridge University Press.Google Scholar
  22. Qian Baocong (ed.) 1963.Suanjing shi shu (Ten mathematical classics). Beijing: Zhonghua shuju.Google Scholar
  23. Swetz F. J. &Kao, T. I. 1977.Was Pythagoras Chinese? An Examination of Right Triangle Theory in Ancient China. Pennsylvania: Pennsylvania State University Press.Google Scholar
  24. Vogel, K. 1968.Neun Bücher Arithmetischer Technik. Braunschweig: Friedr. Vieweg & Sohn.Google Scholar
  25. Wagner, D. 1975. Proof in ancient Chinese mathematics: Liu Hui on the volumes of rectilinear solids. Unpublished thesis, University of Copenhagen.Google Scholar
  26. Wagner, D. 1979. An early Chinese derivation of the volume of a pyramid: Lui Hui, third century A.D.Historia Mathematica 6, pp. 164–188.Google Scholar
  27. Wang Ling 1956. The Chiu chang suan shu and the history of Chinese mathematics during the Han dynasty. Unpublished Ph.D. dissertation, University of Cambridge.Google Scholar
  28. Wang Ling &Needham, J. 1955. Horner's method in Chinese mathematics: Its origins in the root-extraction procedures of the Han dynasty.T'oung Pao 43, 345–401.Google Scholar
  29. Whitehead, A. N. 1911.An Introduction to Mathematics. New York: Oxford University Press. Third printing 1961.Google Scholar
  30. Wu Wenjun (ed.) 1982.Jiu zhang suanshu yu Liu Hui (The Jiu zhang suanshu and Liu Hui). Beijing: Beijing shifan daxue chubanshe.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Lam Lay Yong
    • 1
  1. 1.Department of MathematicsNational University of SingaporeSingapore

Personalised recommendations