Pharmacy World and Science

, Volume 16, Issue 2, pp 127–138 | Cite as

Structure-activity relationships and conformational features of antiherpetic pyrimidine and purine nucleoside analogues. A review

  • T. Kulikowski
Purine and Pyrimidine Metabolism


A rational approach to the design of antiherpetic nucleoside analogues is based in part on the broad specificity ol virus- coded thymidine kinases. Herpes virus thymidine kinase ‘activates’ many 5-substituted 2′-deoxyuridines, analogues ol thymidinc (e.g., idoxuridine, trifluridine, edoxudine, brivudine), 5-substituted arabinofuranosyluracil derivatives (e.g., 5-Et-Ara-U, BV-Ara-U, Cl-Ara-U), acyclonucleosides of guanine (e.g., aciclovir, ganciclovir, penciclovir), and purine nucleosides with the penlafuranosyl ring replaced by a cyclobutane ring (e.g., cyclobut-G, cyclobut-A). Activation involves selective, and frequently regiospecific, phosphorylation ol these analogues to the 5′-monophosphales. These are further phosphorylated by cellular enzymes to the 5′-triphosphates, which are usually competitive inhibitors of the viral-coded DNA polymerases. Some analogues are also incorporated into viral, and to a lesser extent cellular, DNA. A recent, unusual, exception is human cytomegalovirus, which does not code for a thymidine kinase, but for a protein with the sequence characteristics of protein kinase and which phosphorylates ganciclovir to its 5′-monophosphate. The interaction of the analogues with cellular catabolic enzymes such as uridine and thymidine nucleoside phosphorylases is also discussed, as is the relationship between physicochemical properties (configuration, conformation, electronic and hydrophobic parameters) and antiviral activities, with particular reference to those drugs that are licensed, or under consideration, for clinical use.


Antiviral agents Deoxyguanosine analogues Deoxythymidine analogues Deoxyuridine analogues Herpesviridae Mechanism of action Structure-activity relationship 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chalberg MD, Kelly TJ. Animal virus DNA replication. Annu Rev Biochem 1989;58:671–717.PubMedGoogle Scholar
  2. 2.
    Shannon WM, Schabel FM Jr. Antiviral agents as adjuncts in cancer chemotherapy. Pharmacol Ther 1980;11:263–390.PubMedGoogle Scholar
  3. 3.
    Grunert ER. Search for antiviral agents. Annu Rev Microbiol 1979;33:335–53.PubMedGoogle Scholar
  4. 4.
    Nahmias AJ, Roizman B. Infection with herpes simplex viruses 1 and 2. N Engl J Med 1973;289:667–74.PubMedGoogle Scholar
  5. 5.
    Stevens JG. Human herpes viruses: a consideration of the latent state. Microbiol Rev 1989;53:318–22.PubMedGoogle Scholar
  6. 6.
    Robinson JE, Smith D, Niederman J. Plasmacytic differentiation of circulating Epstein-Barr virus-infected B lymphocytes during acute infectious mononucleosis. J Exp Med 1981;153:235–44.PubMedGoogle Scholar
  7. 7.
    Macher AM, Cheryl M, Reichert CM, Straus SE, Longo DL, Parillo J, et al. Death in the AIDS patient: role of cytomegalovirus. N Engl J Med 1983;309:1454.Google Scholar
  8. 8.
    Salahuddin SZ, Ablashi DV, Markham PD, Josephs SF, Sturzenegger S, Kaplan M, et al. Isolation of new virus, HBLV, in patients with lymphoproliferative disorders. Science 1986;234:596–603.PubMedGoogle Scholar
  9. 9.
    Lawrence GL, Chee M, Craxton MA, Gompels UA, Honess RW, Barrell BG. Human herpes virus 6 is closely related to human cytomegalovirus. J Virol 1990;64:287–99.PubMedGoogle Scholar
  10. 10.
    Lusso PL, Gallo RC, De Rocco SE, Markham PD. CD4 is not the membrane receptor for HHV-6. Lancet 1989;1:730.Google Scholar
  11. 11.
    Hoffman PJ, Cheng YC. The deoxyribonuclease induced after infection of KB cells by herpes simplex virus type 1 or type 2. J Biol Chem 1977;253:3557–62.Google Scholar
  12. 12.
    Littler E, Stuart AD, Chee MS. Human cytomegalovirusUL 97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue. Nature 1992;358:160–2.PubMedGoogle Scholar
  13. 13.
    Shugar D. Phosphorylating enzymes involved in activation of chemotherapeutic nucleosides and nucleotides. In: Shugar D, Rode W, Borowski E, editors. Molecular aspects of chemotherapy. Proceedings of the Third International Symposium on Molecular Aspects of Chemotherapy; 1991 Jun 19–21; Gdańsk. Warszawa: Springer-Verlag-PWN, 1992:239–70.Google Scholar
  14. 14.
    Gentry GA. Viral thymidine kinases and their relatives. Pharmacol Ther 1992;54:319–55.PubMedGoogle Scholar
  15. 15.
    Chen MS, Prusoff WH. Association of thymidine kinase activity with pyrimidine deoxyribonucleoside kinase induced by herpes simplex virus. J Biol Chem 1978;253:1325–7.PubMedGoogle Scholar
  16. 16.
    Chen MS, Walker I, Prusoff WH. Kinetic studies of herpes simplex virus type 1-encoded thymidine and thymidylate kinase, a multifunctional enzyme. J Biol Chem 1979;254:10747–53.PubMedGoogle Scholar
  17. 17.
    Knopf KW. Properties of herpes simplex virus DNA polymerase and characterization of its associated exonuclease activity. Eur J Biochem 1979;98:231–44.PubMedGoogle Scholar
  18. 18.
    Ostrander M, Cheng YC. Properties of herpes simplex virus type 1 and type 2 DNA polymerase. Biochim Biophys Acta 1980;609:232–45.PubMedGoogle Scholar
  19. 19.
    Derse D, Cheng YC. Herpes simplex virus type 1 DNA polymerase. J Biol Chem 1981;256:8525–30.PubMedGoogle Scholar
  20. 20.
    Prusoff WH. Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim Biophys Acta 1959;32:295–6.PubMedGoogle Scholar
  21. 21.
    Gauri KK, Malorny G. Chemotherapie der Herpes-infection mit neuen 5-Alkyluracildesoxyribosiden. Naunyn-Schmiedeberg's Arch Pharmacol Exp Pathol 1967;257:21–2.Google Scholar
  22. 22.
    Elion GB, Furman PA, Fyfe JA, De Miranda P, Beauchamp L, Schaeffer HJ. Selectivity of action of an antiherpetic agent 9-(2-hydroxyethoxymethyl)guanine. Proc Natl Acad Sci USA 1977;74:5716–20.PubMedGoogle Scholar
  23. 23.
    De Clercq E, Descamps J, Barr Pj, Jones AS, Serafinowski P, Walker RT, et al. Comparative study of the potency and selectivity of anti-herpes compounds. In: Skoda J, Langen P, editors. Antimetabolites in biochemistry, biology and medicine. Oxford: Pergamon Press, 1979:275–85.Google Scholar
  24. 24.
    Hermann EC Jr. Plaque inhibition test for detection of specific inhibitors of DNA containing viruses. Proc Soc Exp Biol Med 1967;107:142–5.Google Scholar
  25. 25.
    De Clercq E, Descamps J, De Somer P, Barr PJ, Jones AS, Walker RT. (E)-5-(2-Bromovinyl)-2′-deoxyuridine: a potent and selective anti-herpes agent. Proc Natl Acad Sci USA 1979;76:2947–51.PubMedGoogle Scholar
  26. 26.
    De Clercq E, Descamps J, Verhelst G, Jones AS, Walker RT. Antiviral activity of 5-(2-halogenovinyl)-2′-deoxyuridines. In: Current chemotherapy and infectious disease. Proceedings of the 11th ICC and 19th ICAAC 1979. Vol 2. Washington: American Society for Microbiology, 1980:1372–4.Google Scholar
  27. 27.
    Bergstrom DE, Ruth JL, Reddy PA, De Clercq E. Synthesis of (E)-5-(3,3,3-trifluoro-1-propenyl)-2′-deoxyuridine (TFPedUrd), and related analogs: potent and unusually selective antiviral activity of TFPe-dUrd against HSV-1. J Med Chem 1984;27:279–84.PubMedGoogle Scholar
  28. 28.
    Rahim SG, Duggan MJH, Walker RT, Jones AS, Dyer RL, Balzarini J, et al. Synthesis and biological properties of 2′-deoxy-5-vinyluridine and 2′-deoxy-5-vinylcytidine. Nucleic Acids Res 1982;10:5285–95.PubMedGoogle Scholar
  29. 29.
    De Clercq E, Descamps J, Verhelst G, Walker RT, Jones AS, Torrence PF, et al. Comparative efficacy of antiherpes drugs against different strains of herpes simplex virus. J Infect Dis 1980;141:536–74.Google Scholar
  30. 30.
    Park JS, Chang CTC, Schmidt CL, Golander Y, De Clercq E, Descamps J, et al. Oxime and dithiolane derivatives of 5-formyl-2′-deoxyuridine and their 5′-phosphates: antiviral effects and thymidylate synthase inhibition. J Med Chem 1980;23:661–5.PubMedGoogle Scholar
  31. 31.
    De Clercq E, Descamps J, Schmidt CL, Mertes MP. Antiviral activity of 5-methylthiomethyl-2′-deoxyuridine and other 5-substituted 2′-deoxyuridines. Biochem Pharmacol 1979;28:3249–54.PubMedGoogle Scholar
  32. 32.
    Babiuk LA, Meldrum B, Gupta VS, Rouse BT. Comparison of the antiviral effects of 5-methoxymethyldeoxyuridine with 5-iododeoxyuridine, cytosine arabinoside, and adenine arabinoside. Antimicrob Agents Chemother 1975;8:643–50.PubMedGoogle Scholar
  33. 33.
    Griengl H, Schwarz W. Synthesis and antiviral activity of 5′-O- and 3-N-substituted derivatives of 5-(2-chloroethyl)-2′-deoxyuridine. Chem Scripta 1986;26:67–71.Google Scholar
  34. 34.
    Berens K, Shugar D. Ultraviolet absorption spectra and structure of halogenated uracils and their glycosides. Acta Biochim Polon 1963;10:25–48.PubMedGoogle Scholar
  35. 35.
    Camerman N, Trotter J. The crystal and molecular structure of 5-iodo-2′-deoxyuridine. Acta Crystallogr 1965;18:203–11.Google Scholar
  36. 36.
    Kulikowski T, Stolarski R, Shugar D. Solution conformations of biologically active 5-substituted pyrimidine 2′-deoxy- and arabinonucleosides. Nucleic Acids Res Symp Ser 1984;14:235–6.Google Scholar
  37. 37.
    Young DW, Tollin P, Wilson HR. The crystal and molecular structure of thymidine. Acta Crystallogr B 1969;25:1423–32.Google Scholar
  38. 38.
    Lemieux RU. Configuration and conformation of thymidine. Can J Chem 1960;39:116–20.Google Scholar
  39. 39.
    Fischer PH, Chen MP, Prusoff WH. The incorporation of 5-iodo-5′-amino-2′,5′-dideoxyuridine and 5-iodo-2′-deoxyuridine into herpes simplex virus DNA. Biochim Biophys Acta 1980;606:236–45.PubMedGoogle Scholar
  40. 40.
    Calabresi P, Cardoso SS, Finch SC, Kligerman MM, Von Essen CF, Chu MY, et al. Initial clinical studies with 5-iodo-2′-deoxyuridine. Cancer Res 1961;21:550–9.PubMedGoogle Scholar
  41. 41.
    Otto MJ, Goz B, Prusoff WH. Antiviral activity of iodinated pyrimidine deoxyribonucleosides. In: Becker YC, editor. Antiviral drugs and interferon, the molecular basis of their activity. Boston: Martinus Nijhoff Publishing, 1984;11–38.Google Scholar
  42. 42.
    Otto MJ, Lee JJ, Prusoff WH. Effects of nucleoside analogs on the expression of herpes simplex type 1-induced proteins. Antiviral Res 1982;2:267–81.PubMedGoogle Scholar
  43. 43.
    Pontis HG, Degerstedt G, Reichard P. Uridine and deoxyuridine phosphorylases from Ehrlich ascites tumor. Biochim Biophys Acta 1961;51:138–47.PubMedGoogle Scholar
  44. 44.
    Huberman E, Heidelberger C. Mutagenicity to mammalian cells of pyrimidine nudeoside analogs. Mutat Res 1972;14:130–2.PubMedGoogle Scholar
  45. 45.
    Itoi M, Gefter JW, Kaneko N, Ishii Y, Ramer RM, Gasset MA. Teratogenicities of ophthalmic drugs. I. Antiviral ophthalmic drugs. Arch Opthalmol 1975;93:46–51.Google Scholar
  46. 46.
    Kaufman HE. Clinical cure of herpes simplex keratitis by 5-iodo-2′-deoxyuridine. Proc Soc Exp Biol Med 1962;109:251–2.PubMedGoogle Scholar
  47. 47.
    Heidelberger C, Parsons D, Remy DC. Syntheses of 5-trifluoromethyluracil and 5-trifluoromethyl-2′-deoxyuridine. J Am Chem Soc 1962;84:3597–8.Google Scholar
  48. 48.
    Heidelberger C, King DH. Trifluorothymidine. Pharmacol Ther 1979;6:427–42.Google Scholar
  49. 49.
    Heidelberger C, Danenberg PV, Moran RG. Fluorinated pyrimidines and their nucleosides. Adv Enzymol 1983;54:57–119.Google Scholar
  50. 50.
    Carmine AA, Brogden RN, Heel RC, Speight TM, Avery GS. Trifluridine: a review of its antiviral activity and therapeutic use in the topical treatment of viral eye infections. Drugs 1982;23:329–53.PubMedGoogle Scholar
  51. 51.
    Kaufman HE, Heidelberger C. Therapeutic antiviral action of 6-trifluoromethyl-2′-deoxyuridine in herpes simplex keratitis. Science 1964;145:585–6.PubMedGoogle Scholar
  52. 52.
    Cassiman JJ, De Clercq E, Jones AS, Walker RT, Van Den Berghe H. Sister chromatid exchange induced by antiherpes drugs. BMJ 1981;283:817–8.PubMedGoogle Scholar
  53. 53.
    Pietrzykowska I, Shugar D. Studies on bacteriophage and bacteriophage DNA containing 5-ethyluracil or 5-bromouracil in place of thymine. Acta Biochim Polon 1967;14:169–81.PubMedGoogle Scholar
  54. 54.
    Świerkowski M, Shugar D. A nonmutagenic thymidine analog with antiviral activity. 5-Ethyldeoxyuridine. J Med Chem 1969;12:533–4.PubMedGoogle Scholar
  55. 55.
    Remin M, Ekiel I, Shugar D. Proton magnetic resonance study of solution conformation of theα andβ anomers of 5-ethyl-2′-deoxyuridine. Eur J Biochem 1975;75:197–206.Google Scholar
  56. 56.
    Kulikowski T, Shugar D. 5-Alkylpyrimidine nucleosides. Preparation and properties of 5-ethyl-2′-deoxycytidine and related nucleosides. J Med Chem 1974;17:269–73.PubMedGoogle Scholar
  57. 57.
    Gauri KK, Pflughaupt KW, Müller R. Synthese und photochemische Eigenschaften von 1-(2′-Desoxy-beta-D-ribofuranosyl)-(4-3H)-5-äthyluracil. Z Naturforsch 1969;24B:833–6.Google Scholar
  58. 58.
    De Clercq E, Shugar D. Antiviral activity of 5-ethyl pyrimidine deoxynucleosides. Biochem Pharmacol 1975;24:1073–8.PubMedGoogle Scholar
  59. 59.
    De Clercq E, Kulikowski T, Shugar D. The 5′-monophosphates of 5-propyl- and 5-ethyl-2′-deoxyuridine do not inhibit the replication of deoxythymidine kinase deficient (TK) mutants of herpes simplex virus. Biochem Pharmacol 1980;29:2883–5.PubMedGoogle Scholar
  60. 60.
    De Clercq E, Bernaerts R. Mechanism of antiviral activity of 5-ethyl-2′-deoxyuridine. Nucleosides Nucleotides 1987;6:421–2.Google Scholar
  61. 61.
    Schinazi RF, Scott RT, Peters J, Rice V, Nahmias AJ. Antiviral activity of 5-ethyl-2′-deoxyuridine against herpes simplex viruses in cell culture, mice and guinea pigs. Antimicrob Agents Chemother 1985;28:552–60.PubMedGoogle Scholar
  62. 62.
    Guari KK, Malorny G, Riehm E. 5-Äthyl-2′-desoxyuridin (ÄDU) auf die Regeneration der experimentell geschädigten Cornea. Graefer Arch Klin Ophthalmol 1970;179:287–93.Google Scholar
  63. 63.
    Kunkel HA, Gauri KK, Malorny G. Biophysik. Keine Mutationsauslösung durch 5-Äthyl-2′-desoxyuridin (ÄDU) beiDrosophila melanogaster. 1968;5:88–90.Google Scholar
  64. 64.
    Gauri KK, Shif I, Wolford RG. Failure of 5-ethyl-2′-deoxyuridine to induce oncogenic RNA viruses in Fisher rat embryo cells and in Balb/3T3 mouse cells. Biochem Pharmacol 1976;25;1809–10.PubMedGoogle Scholar
  65. 65.
    Walker RT, Barr PJ, De Clercq E, Descamps J, Jones AS, Serafinowski P. The synthesis and properties of some antiviral nucleosides. Nucleic Acids Res Spec Publ 1978;4:103–6.Google Scholar
  66. 66.
    De Clercq E, Descamps J, De Somer P, Barr PJ, Jones AS, Walker RT. (E)-5-(2-bromovinyl)-2′-deoxyuridine, a potent and selective antiherpes agent. Proc Natl Acad Sci USA 1979;76:2947–51.PubMedGoogle Scholar
  67. 67.
    Jones AS, Rahim SG, Walker RT, De Clercq E. Synthesis and antiviral properties of (2)-5-(2-bromovinyl)-2′-deoxyuridine. J Med Chem 1981;24:759–60.PubMedGoogle Scholar
  68. 68.
    Reefschläger J, Bärwolff D, Herrmann G, Langen P. Antiherpes activity of some novel analogues of (E)-5-(2-bromovinyl)-2′-deoxyuridine (E-BrVUdR) in two different cell lines. Acta Virol 1984;28:1–10.PubMedGoogle Scholar
  69. 69.
    De Clercq E, Verhelst G, Descamps J, Bergström DE. Differential inhibition of herpes simplex viruses, type 1 (HSV-1) and type 2 (HSV-2), by (E)-5-(2-X-vinyl)-2′-deoxyuridines. Acta Microb Acad Sci Hung 1981;28:307–12.Google Scholar
  70. 70.
    Fyfe JA. Differential phosphorylation of (E)-5-(2-bromovinyl)-2′-deoxyuridine monophosphate by thymidylate kinases from herpes simplex viruses types 1 and 2 and varicella zoster virus. Mol Pharmacol 1982;21:432–7.PubMedGoogle Scholar
  71. 71.
    Allaudeen HS, Kozarich JW, Bertino JR, De Clercq E. On the mechanism of selective inhibition of herpes virus replication by (E)-5-(2-bromovinyl)-2′-deoxyuridine. Proc Natl Acad Sci USA 1981;78:2698–702.PubMedGoogle Scholar
  72. 72.
    Mancini WR, De Clercq E, Prusoff WH. The relationship between incorporation of (E)-5-(2-bromovinyl)-2′-deoxyuridine into herpes simplex virus type 1 DNA with virus infectivity and DNA integrity. J Biol Chem 1983;258:792–5.PubMedGoogle Scholar
  73. 73.
    Balzarini J, Bernaerts R, Verbruggen A, De Clercq E. (E)-5-(2-iodovinyl)-2′-deoxyuridine and its carbocyclic analogue into DNA of herpes simplex virus type 1 -infected cells in the antiviral effects of these compounds. Mol Pharmacol 1990;37:402–7.PubMedGoogle Scholar
  74. 74.
    Sági J, Czuppon A, Kajtar M, Szabolcs A, Szemzö A, Ötvos L. Modified polynucleotides VI. Properties of a synthetic DNA containing the anti-herpes agent (E)-5-(2-bromovinyl)-2′-deoxyuridine. Nucleic Acids Res 1982;10:6051–66.PubMedGoogle Scholar
  75. 75.
    Barr PJ, Oppenheimer NJ, Santi DV. Thymidylate synthetase-catalyzed conversions of (E)-5-(2-bromovinyl)-2′-deoxyuridylate. J Biol Chem 1983;258:13627–31.PubMedGoogle Scholar
  76. 76.
    Veres Z, Szabolc A, Szinai I, Dénes G, Jeney A. Enzymatic cleavage of 5-substituted 2′-deoxyuridines by pyrimidine nudeoside phosphorylases. Biochem Pharmacol 1986;35:1057–9.PubMedGoogle Scholar
  77. 77.
    Desgranges C, Razaka G, Rabaud M, Bricaud H, Balzarini J, De Clercq E. Phosphorolysis of (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU) and other 5-substituted 2′-deoxyuridines by purified human thymidine phosphorylase and intact blood platelets. Biochem Pharmacol 1989;32:3583–90.Google Scholar
  78. 78.
    Machida H, Sakata S, Kuninaka A, Yoshino H, Nakayama C, Saneyoshi M.In vitro antiherpes viral activity of 5-alkyl derivatives of 1-β-D-arabinofuranosyluracil. Antimicrob Agents Chemother 1979;16:158–63.PubMedGoogle Scholar
  79. 79.
    Kulikowski T, Zawadzki Z, Shugar D, Descamps J, De Clercq E. Synthesis and antiviral activities of arabinofuranosyl-5-ethylpyrimidine nucleosides. Selective antiherpes activity of 1-(β-D-arabinofuranosyl)-5-ethyluracil. J Med Chem 1979;22:647–53.PubMedGoogle Scholar
  80. 80.
    Machida H, Sakata S, Kuninaka A, Yoshino H. Antiherpesviral and anticellular effects of 1-beta-D-arabinofuranosyl-E-5-(2-halogenovinyl)uracils. Antimicrob Agents Chemother 1981;20:47–52.PubMedGoogle Scholar
  81. 81.
    De Clercq E, Busson R, Colla L, Descamps J, Balzarini J, Vanderhaege H. Antiviral activity of sugar-modified derivatives of (E)-5-(2-bromovinyl)-2′-deoxyuridine. In: Periti P, Grassi GG, editors. Current Chemotherapy and Immunotherapy. Washington: American Society for Microbiology, 1982:1062–4.Google Scholar
  82. 82.
    Machida H, Kuninaka A, Yoshino H, Ikeda K, Mizuno Y. Antiherpes viral activity and inhibitory action on cell growth of 5-alkenyl derivatives of 1-beta-D-arabinofuranosyluracil. Antimicrob Agents Chemother 1980;17:1030–1.PubMedGoogle Scholar
  83. 83.
    Shealy YF, O'Dell CA, Shannon WM, Arnett G. Carbocyclic analogues of 5-substituted uracil nucleosides: synthesis and antiviral activity. J Med Chem 1983;26:156–61.PubMedGoogle Scholar
  84. 84.
    Shealy YF, O'Dell CA, Arnett G, Shannon WM. Synthesis and antiviral activity of the carbocyclic analogues of 5-ethyl-2′-deoxyuridine and 5-ethynyl-2′-deoxyuridine. J Med Chem 1986;29:79–84.PubMedGoogle Scholar
  85. 85.
    Maruyama T, Hanai Y, Sato Y, Snoeck R, Andrei G, Hosoya M, et al. Synthesis and antiviral activity of carbocyclic oxetanocin analogues (C-OXT-A, C-OXT-G) and related compounds. II. Chem Pharm Bull 1993;41:516–21.PubMedGoogle Scholar
  86. 86.
    Balzarini J, De Clercq E, Baumgartner H, Bodenteich M, Griengl H. Carbocyclic 5-iodo-2′-deoxyuridine (C-IDU) and carbocyclic (E)-5-(2-bromovinyl)-2′-deoxyuridine (CBVDU) as unique examples of chiral molecules where the two enantiometric forms are biologically active: interaction of the (+) and (−) enantiomers of C-IDU and C-BVDU with the thymidine kinase of herpes simplex virus type 1. Mol Pharmacol 1990;37:395–401.PubMedGoogle Scholar
  87. 87.
    Yokota T, Konno K, Mori S, Shigeta S, Kumagai M, Watanabe Y, et al. Mechanism of selective inhibition of varicella zoster virus replication by 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyluracil). Mol Pharmacol 1989;36:312–6.PubMedGoogle Scholar
  88. 88.
    Bario JR, Bryant JD, Keyser GE. A direct method for the preparation of 2-hydroxymethyl derivatives of guanine, adenine and cytosine. J Med Chem 1980;23:572–4.PubMedGoogle Scholar
  89. 89.
    Schaffer HJ, Beauchamp L, De Miranda P, Elion GB, Bauer DJ, Collins P. 9-(2-Hydroxyethoxymethyl)guanine activity against viruses of the herpes group. Nature 1978;272:583–5.PubMedGoogle Scholar
  90. 90.
    De Clercq E. Selective antiherpes agents. Trends Pharmacol Sci 1982;3;492–5.Google Scholar
  91. 91.
    Derse P, Cheng YC, Furman PA, St Claire MH, Elion GB. Inhibition of purified human and herpes simplex virusinduced DNA polymerases by 9-(2-hydroxyethoxymethyl)guanine triphosphate. J Biol Chem 1981;256:11447–51.PubMedGoogle Scholar
  92. 92.
    Collins P, Bauer DJ. The activityin vitro against herpes virus of 9-(2-hydroxyethoxymethyl)guanine (acycloguanosine), a new antiviral agent. J Antimicrob Chemother 1979;5:431–6.PubMedGoogle Scholar
  93. 93.
    Crumpacker CS, Schnipper LE, Zaia JA, Levin MJ. Growth inhibition by acycloguanosine of herpes viruses isolated from human infections. Antimicrob Agents Chemother 1979;15:642–5.PubMedGoogle Scholar
  94. 94.
    Biron KK, Elion GB.In vitro susceptibility of varicella zoster virus to acyclovir. Antimicrob Agents Chemother 1980;18:443–7.PubMedGoogle Scholar
  95. 95.
    Mindel A, Kinghorn G, Alison-Jones E, Wodee P, Barton I, Faherty A, et al. Treatment of first-attack genital herpesacyclovir versus inosine pranobex. Lancet 1987;1:1171–3.PubMedGoogle Scholar
  96. 96.
    Straus SE, Takiff HE, Seidlin M, Bachrach S, Lininger L, Di Giovanna JJ, et al. Suppression of frequently recurring genital herpes. A placebo-controlled double blind trial of oral acyclovir. N Engl J Med 1984;310:1545–50.PubMedGoogle Scholar
  97. 97.
    De Clercq E. Recent advances in the search for selective antiviral agents. Adv Drug Res 1988;17:1–59.Google Scholar
  98. 98.
    Field AK, Davies ME, De Witt C, Perry HC, Liou R, Germershausen J, et al. Hydroxy-1-(hydroxymethyl)ethoxy-methyl-guanine: a selective inhibitor of herpes group virus replication. Proc Natl Acad Sci USA 1983;80:4139–43.PubMedGoogle Scholar
  99. 99.
    Freitas VR, Smee DF, Chernow M, Boehme R, Matthews TR. Activity of 9-(1,3-dihydroxy-2-propoxymethyl)guanine compared with that of acyclovir against human, monkey, and rodent cytomegalovirus. Antimicrob Agents Chemother 1985;28:240–5.PubMedGoogle Scholar
  100. 100.
    Lin JC, Smith MC, Pagano JS. Prolonged inhibitory effect of 9-(1,3-dihydroxy-2-propoxymethyl)guanine against replication of Epstein-Barr virus. J Virol 1984;50:50–5.PubMedGoogle Scholar
  101. 101.
    Cheng YC, Grill SP, Dutschman GE, Nakayama K, Bastow KF. Metabolism of 9-(1,3-dihydroxy-2-propoxymethyl)guanine, a new anti-herpes virus compound, in herpes simplex virus-infected cells. J Biol Chem 1983;258:12460–4.PubMedGoogle Scholar
  102. 102.
    Biron KK, Stanat SC, Sorrell JB, Fyfe JA, Keller PM, Lambe CU, et al. Metabolic activation of the nucleoside analog 9-([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine in human diploid fibroblasts infected with human cytomegalovirus. Proc Natl Acad Sei USA 1985;82:2473–7.Google Scholar
  103. 103.
    Estes JE, Huang ES. Stimulation of cellular thymidine kinases by human cytomegalovirus. J Virol 1976;24:13–21.Google Scholar
  104. 104.
    Fyfe JA, Keller PM, Furman PA, Miller RL, Elion GB. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J Biol Chem 1978;253:8721–7.PubMedGoogle Scholar
  105. 105.
    Larsson A, Stenberg K, Ericson AC, Haglund U, Yisak WA, Johanson NG, et al. Mode of action, toxicity, pharmacokinetics, and efficacy of some new antiherpes virus guanosine analogs related to buciclovir. Antimicrob Agents Chemother 1986;30:598–605.PubMedGoogle Scholar
  106. 106.
    Harnden MR, Jarvest RL, Bacon TH, Boyd MR. Synthesis and antiviral activity of 9-[4-hydroxy-3(hydroxymethyl)-but-1-yl] purines. J Med Chem 1987;30:1636–42.PubMedGoogle Scholar
  107. 107.
    Boyd MR, Bacon TH, Sutton D, Cole M. Antiherpes virus activity of 9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine (BRL 39123) in cell culture. Antimicrob Agents Chemother 1987;31:1238–42.PubMedGoogle Scholar
  108. 108.
    Akesson-Johansson A, Harmenberg J, Wahren B, Linde A. Inhibition of human herpes virus 6 replication by [4-hydroxy-2-(hydroxymethyl)-butyl]guanine (2HM-HBG) and other antiviral compounds. Antimicrob Agents Chemother 1990;34:2417–9.PubMedGoogle Scholar
  109. 109.
    Stenberg K, Larsson A, Datema R. Metabolism and mode of action of (R)-9-(3,4-dihydroxybutyl) guanine in herpes simplex virus infected Vero cells, J Biol Chem 1986;261:2134–9.PubMedGoogle Scholar
  110. 110.
    Stenberg K, Lundstrom M, Olofson S, Datema R. Incorporation into nucleic acids of the antiherpes guanosine analog buciclovir and effects on DNA protein synthesis. Biochem Pharmacol 1988;37:1925–31.PubMedGoogle Scholar
  111. 111.
    Field AK, Tuomari AV, McGeever-Rubin B, Terry BJ, Mazina KE, Haffey ML, et al. (±)-(1α,2β,3α)-9-[2,3-bis-(hydroxymethylcyclobutyl]guanine [(±)-BHCG or SQ 33054] a potent and selective inhibitor of herpes viruses. Antiviral Res 1990;13:41–52.PubMedGoogle Scholar
  112. 112.
    Hayashi S, Norbeck DW, Rosenbrook W, Fine RL, Matsukara M, Plattner JJ, et al. Cyclobut-A and cyclobut-G, carbocyclic oxetanocin analogs that inhibit the replication of human immunodeficiency virus in T cells and monocytes and macrophagesin vitro. Antimicrob Agents Chemother 1990;34:287–94.PubMedGoogle Scholar
  113. 113.
    Norbeck DW, Kern E, Hayashi S, Rosenbrook W, Sham H, Herrin T, et al. Cyclobut-A and cyclobut-G: broad-spectrum antiviral agents with potential utility for the therapy of AIDS. J Med Chem 1990;33:1281–85.PubMedGoogle Scholar
  114. 114.
    Nishiyama Y, Yamamoto N, Takahashi K, Shimada N. Selective inhibition of human cytomegalovirus replication by novel nucleoside, oxetanocin G. Antimicrob Agents Chemother 1988;32:1053–6.PubMedGoogle Scholar
  115. 115.
    Harnden MR, Bailey S, Boyd MR, Cole M, Jarvest RL, Wyatt PG. New purine derivatives with selective antiviral activity. In: Leeming PR, editor. Topics in medicinal chemistry. Proceedings of 4th SCI-RSC Medicinal Chemistry Symposium; 1987 Sep 6–9; Cambridge, England. Cambridge: Royal Society of Chemistry, 1987:214–44.Google Scholar
  116. 116.
    Harnden MR. Penciclovir and famciclovir, selective antiherpes agents. In: Shugar D, Rode W, Borowski E, editors. Molecular aspects of chemotherapy. Proceedings of the Third International Symposium on Molecular Aspects of Chemotherapy; 1991 Jun 19–21; Gdańsk. Warszawa: Springer-Verlag-PWN, 1992;219–30.Google Scholar

Copyright information

© Royal Dutch Association for the Advancement of Pharmacy 1994

Authors and Affiliations

  • T. Kulikowski
    • 1
  1. 1.Inslitute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland

Personalised recommendations