Pharmacy World and Science

, Volume 16, Issue 2, pp 113–126 | Cite as

Metabolism and mechanism of antiretroviral action of purine and pyrimidine derivatives

  • Jan Balzarini
Purine and Pyrimidine Metabolism


Unlike herpes viruses, human immunodeficiency virus and other retroviruses do not encode specific enzymes required for the metabolism of the purine or pyrimidine nucleosides to their corresponding 5′-triphosphates. Therefore, 2′,3′-dideoxynucleosides and acyclic nucleoside phosphonates must be phosphorylated and metabolized by host cell kinases and other enzymes of purine and/or pyrimidine metabolism. Different animal species (or even different cell types within one animal species) may differ in the efficiency of conversion of these drugs to their antivirally active metabolite(s). Three 2′,3′-dideoxynucleosides are officially licensed for clinical use [i.e., zidovudine (3′-azido-2′,3′-dideoxythymidine, AZT), didanosine (2′,3′-dideoxyinosine, DDI) and zalcitabine (2′,3′-dideoxycytidine, DDC)]. A number of other 2′,3′-dideoxynucleoside analogues [among them stavudine (2′,3′-didehydro-2′,3′-dideoxythymidine, D4T), 2′,3′-dideoxy-3′-thiacytidine (3TC), 2′,3′-dideoxy-5-fluoro-3′-thiacytidine (FTC) and the acyclic nucleoside phosphonate 9-(2-phosphonylmethoxyethyl)adenine (PMEA)] are currently under clinical investigation and are candidate compounds for eventual licensing as anti-AIDS drugs. The metabolic pathways, antimetabolic effects and mechanism of antiviral action of these nucleoside analogues will be discussed.


Acquired immunodeficiency syndrome Antiviral agents Dideoxynucleosides Drug development HIV Nucleoside phosphorates, acyclic Phosphonylmethoxyelhyladenine Reverse transcriptase TSAO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mitsuya H, Popovic M, Yarchoan R, Matsushita S, Gallo RC, Broder S. Suramin protection of T cellsin vitro against infectivity and cytopathic effect of HTLV-III. Science 1984;226:172–4.PubMedGoogle Scholar
  2. 2.
    Mitsuya H, Weinhold KJ, Furman PA, St Clair MH, Nusinoff Lehman S, Gallo RC, et al. 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virusin vitro. Proc Natl Acad Sci USA 1985;82:7096–100.PubMedGoogle Scholar
  3. 3.
    Horwitz JP, Chua J, Noel M, Nucleosides V. The monomesylates of 1-(2′-deoxy-β-D-lyxofuranosyl)thymidine. J Org Chem 1964;29:2076–8.Google Scholar
  4. 4.
    Lin TS, Prusoff WH. Synthesis and biological activity of several amino acid analogues of thymidine. J Med Chem 1978;21:109–12.PubMedGoogle Scholar
  5. 5.
    Ostertag W, Roesler G, Krieg CJ, Kind J, Cole T, Crazier T, et al. Induction of endogenous virus and of thymidine kinase by bromodeoxyuridine in cell cultures transformed by Friend virus. Proc Natl Acad Sci USA 1974;71:4980–5.PubMedGoogle Scholar
  6. 6.
    Waqar MA, Evans MJ, Manly KF, Hughes RG, Huberman JA. Effects of 2′,3′-dideoxynucleosides on mammalian cells and viruses. J Cell Physiol 1984;121:402–8.PubMedGoogle Scholar
  7. 7.
    Mitsuya H, Broder S. Inhibition of thein vitro infectivity and cytopathic effect of human T-lymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2′,3′-dideoxynucleosides. Proc Natl Acad Sci USA 1986;83:1911–5.PubMedGoogle Scholar
  8. 8.
    Balzarini J, Pauwels R, Herdewijn P, De Clercq E, Cooney DA, Kang G-J, et al. Potent and selective anti-HTLV-III/LAV activity of 2′,3′-dideoxycytidinene, the 2′,3′-unsaturated derivative of 2′,3′-dideoxycytidine. Biochem Biophys Res Commun 1986;140:735–42.PubMedGoogle Scholar
  9. 9.
    Balzarini J, Kang G-J, Dalal M, Herdewijn P, De Clercq E, Broder S, et al. The anti-HTLV-III (anti-HIV) and cytotoxic activity of 2′,3′-didehydro-2′,3′-dideoxyribonucleosides: a comparison with their parental 2′,3′-dideoxyribonucleosides. Mol Pharmacol 1987;32:162–7.PubMedGoogle Scholar
  10. 10.
    Baba M, Pauwels R, Herdewijn P, De Clercq E, Desmyter J, Vandeputte M. Both 2′,3′-dideoxythymidine and its 2′,3′-unsaturated derivative (2′,3′-dideoxythymidinene) are potent and selective inhibitors of human immunodeficiency virus replicationin vitro. Biochem Biophys Res Commun 1987;142:128–34.PubMedGoogle Scholar
  11. 11.
    Marongiu ME, August EM, Prusoff WH. Effect of 3′-deoxythymidin-2′-ene (D4T) on nucleoside metabolism in H9 cells. Biochem Pharmacol 1990;39:1523–8.PubMedGoogle Scholar
  12. 12.
    Mansuri MM, Starrett JE Jr, Ghazzouli I, Hitchcock MJM, Sterzycki RZ, Brankovan V, et al. 1-(2,3-Dideoxy-β-D-glycero-pent-2-enofuranosyl)thymine (d4T). A highly potent and selective anti-HIV agent. J Med Chem 1989;32:461–6.PubMedGoogle Scholar
  13. 13.
    Lin T-S, Schinazi RF, Chen MS, Kinney-Thomas E, Prusoff WH. Antiviral activity of 2′,3′-dideoxycytidin-2′-ene (2′,3′-dideoxy-2′,3′-didehydrocytidine) against human immunodeficiency virusin vitro, Biochem Pharmacol 1987;36:311–6.PubMedGoogle Scholar
  14. 14.
    Herdewijn P, Balzarini J, De Clercq E, Pauwels R, Baba M, Broder S, et al. 3′-Substituted 2′,3′-dideoxynucleoside analogues as potential anti-HIV (HTLV-III/LAV) agents. J Med Chem 1987;30:1270–8.PubMedGoogle Scholar
  15. 15.
    Balzarini J, Van Aerschot A, Pauwels R, Baba M, Schols D, Herdewijn P, et al. 5-Halogeno-3′-fluoro-2′,3′-dideoxyuridines as inhibitors of human immunodeficiency virus (HIV): potent and selective anti-HIV activity of 3′-fluoro-2′,3′-dideoxy-5-chlorouridine. Mol Pharmacol 1989;35:571–7.PubMedGoogle Scholar
  16. 16.
    Bazin H, Chattopadhyaya J, Datema R, Ericson A-C, Gilljam G, Johansson NG, et al. An analysis of the inhibition of replication of HIV and MULV by some 3′-blocked pyrimidine analogs. Biochem Pharmacol 1989;38:109–19.PubMedGoogle Scholar
  17. 17.
    Balzarini J, Baba M, Pauwels R, Herdewijn P, De Clerq E. Anti-retrovirus activity of 3′-fluoro- and 3′-azido-substituted pyrimidine 2′,3′-dideoxynucleoside analogues. Biochem Pharmacol 1989;37:2847–56.Google Scholar
  18. 18.
    Herdewijn P, Balzarini J, Baba M, Pauwels R, Van Aerschot A, Janssen G, et al. Synthesis and anti-HIV activity of different sugar-modified pyrimidine and purine nucleosides. J Med Chem 1988;31:2040–8.PubMedGoogle Scholar
  19. 19.
    Lin T-S, Guo J-Y, Schinazi RF, Chu CK, Xiang J-N, Prusoff WH. Synthesis and antiviral activity of various 3′-azido analogues of pyrimidine deoxyribonucleosides against human immunodeficiency virus (HIV-1, HTLV-III/LAV). J Med Chem 1988;1:336–40.Google Scholar
  20. 20.
    Baba M, Pauwels R, Balzarini J, Herdewijn P, De Clercq E. Selective inhibition of human immunodeficiency virus (HIV) by 3′-azido-2′,3′-dideoxyguanosinein vitro. Biochem Biophys Res Commun 1987;145:1080–6.PubMedGoogle Scholar
  21. 21.
    Balzarini J, Baba M, Pauwels R, Herdewijn P, Wood SG, Robins MJ, et al. Potent and selective activity of 3′-azido-2,6-diaminopurine-2′,3′-dideoxyriboside, 3′-fluoro-2, 6-diaminopurine-2′,3′-dideoxyriboside, and 3′-fluoro-2′,3′-dideoxyguanosine against human immunodeficiency virus. Mol Pharmacol 1988;33:243–9.PubMedGoogle Scholar
  22. 22.
    Martin JA, Bushnell DJ, Duncan IB, Dunsdon SJ, Hall MJ, Machin PJ, et al. Synthesis and antiviral activity of monofluoro and difluoro analogues of pyrimidine deoxyribonucleosides against human immunodeficiency virus (HIV-1). J Med Chem 1990;33:2137–45.PubMedGoogle Scholar
  23. 23.
    Masood RW, Ahluwalia GS, Cooney DA, Fridland A, Marquez VE, Driscoll JS, et al. 2′-Fluoro-2′,3′-dideoxyarabinosyladenine: a metabolically stable analogue of the antiretroviral agent 2′,3′-dideoxyadenosine. Mol Pharmacol 1990;37:590–6.PubMedGoogle Scholar
  24. 24.
    Marquez VE, Tseng CK-H, Kelley JA, Mitsuya H, Broder S, Roth JS, et al. 2′,3′-dideoxy-2′-fluoro-ara-A. An acid-stable purine nucleoside active against human immunodeficiency virus (HIV). Biochem Pharm 1987;36:2719–22.PubMedGoogle Scholar
  25. 25.
    Vince R, Hua M, Brownell J, Daluge S, Lee F, Shannon WM, et al. Potent and selective activity of a new carbocyclic nucleoside analog (carbovir: NSC 614846) against human immunodeficiency virusin vitro. Biochem Biophys Res Commun 1988;156:1046–53.PubMedGoogle Scholar
  26. 26.
    Carter SG, Kessler JA, Rankin CD. Activities of (−)-carbovir and 3′-azido-3′-deoxythymidine against human immunodeficiency virusin vitro. Antimicrob Agents Chemother 1990;34:1297–300.PubMedGoogle Scholar
  27. 27.
    Norbeck DW, Spanton S, Broder S, Mitsuya H. (±)-Dioxolane-T. A new 2′,3′-dideoxynucleoside prototype within vitro activity against HIV. Tetrahedron Lett 1989;30:6263–6.Google Scholar
  28. 28.
    Soudeyns H, Yao X-J, Gao Q, Belleau B, Kraus J-L, Nguyen-Ba N, et al. Anti-human immunodeficiency virus type 1 activity andin vitro toxicity of 2′-deoxy-3′-thiacytidine (BCH-189), a novel heterocyclic nucleoside analog. Antimicrob Agents Chemother 1991;35:1386–90.PubMedGoogle Scholar
  29. 29.
    Coates JAV, Cammack N, Jenkinson HJ, Mutton IM, Pearson BA, Storer R, et al. The separated enantiomers of 2′-deoxy-3′-thiacytidine (BCH 189) both inhibit human immunodeficiency virus replicationin vitro. Antimicrob Agents Chemother 1992;36:202–5.PubMedGoogle Scholar
  30. 30.
    Schinazi RF, Chu CK, Peck A, McMillan A, Mathis R, Cannon D, et al. Activities of the four optical isomers of 2′,3′-dideoxy-3′-thiacytidine (BCH-189) against human immunodeficiency virus type 1 in human lymphocytes. Antimicrob Agents Chemother 1992;36:672–6.PubMedGoogle Scholar
  31. 31.
    Schinazi RF, McMillan A, Cannon D, Mathis R, Lloyd RM, Peck A, et al. Selective inhibition of human immunodeficiency viruses by racemates and enantiomers ofcis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine. Antimicrob Agents Chemother 1992;36:2423–31.PubMedGoogle Scholar
  32. 32.
    Seki J-I, Shimada N, Takahashi K, Takita T, Takeuchi T, Hoshino H. Inhibition of infectivity of human immunodeficiency virus by a novel nucleoside, oxetanocin, and related compounds. Antimicrob Agents Chemother 1989;33:773–5.PubMedGoogle Scholar
  33. 33.
    Tseng CK-H, Marquez VE, Milne GWA, Wysocki RJ, Mitsuya H, Shirasaki T, et al. A ring-enlarged oxetanocin A analogueas an inhibitor of HIV infectivity. J Med Chem 1991;34:343–9.PubMedGoogle Scholar
  34. 34.
    Hayashi S, Phadtare S, Zemlicka J, Matsukura M, Mitsuya H, Broder S. Adenallene and cytallene: acyclic nucleoside analogues that inhibit replication and cytopathic effect of human immunodeficiency virusin vitro. Proc Natl Acad Sci USA 1988;85:6127–31.PubMedGoogle Scholar
  35. 35.
    Hayashi S, Norbeck DW, Rosenbrook W, Fine RL, Matsukura M, Plattner JJ, et al. Cyclobut-A and cyclobut-G, carbocyclic oxetanocin analogs that inhibit the replication of human immunodeficiency virus in T cells andmonocytes and macrophagesin vitro. Antimicrob Agents Chemother 1990;34:287–94.PubMedGoogle Scholar
  36. 36.
    De Clercq E, Holy A, Rosenberg I, Sakuma T, Balzarini J, Maudgal PC. A novel selective broad-spectrum anti-DNA virus agent. Nature 1986;323:464–7.PubMedGoogle Scholar
  37. 37.
    De Clercq E, Sakuma T, Baba R, Pauwels R, Balzarini J, Rosenberg I, et al. Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines. Antiviral Res 1987;8:261–72.PubMedGoogle Scholar
  38. 38.
    De Clercq E. Broad-spectrum anti-DNA virus and antiretrovirus activity of phosphonylmethoxyalkylpurines and -pyrimidines. Biochem Pharmacol 1991;42:963–72.PubMedGoogle Scholar
  39. 39.
    Pauwels R, Balzarini J, Schols D, Baba M, Desmyter J, Rosenberg I, et al. Phosphonylmethoxyethylpurine derivatives, a new class of anti-human immunodeficiency virus agents. Antimicrob Agents Chemother 1988;32:1025–30.PubMedGoogle Scholar
  40. 40.
    Balzarini J, Naesens L, Herdewijn P, Rosenberg I, Holy A, Pauwels R, et al. Markedin vivo antiretrovirus activity of 9-(2-phosphonylmethoxyethyl)adenine, a selective antihuman immunodeficiency virus agent. Proc Natl Acad Sci USA 1989;86:332–6.PubMedGoogle Scholar
  41. 41.
    Balzarini J, Naesens L, Slachmuylders J, Niphis H, Rosenberg I, Holy A, et al. 9-(2-Phosphonylmethoxyethyl)adenine (PMEA) effectively inhibits retrovirus replicationin vitro and simian immunodeficiency virus infection in rhesus monkeys. AIDS 1991;5:21–8.PubMedGoogle Scholar
  42. 42.
    Balzarini J, Naesens L, De Clercq, E. Anti-retrovirus activity of 9-(2-phosphonylmethoxyethyl)adenine (PMEA)in vivo increases when it is less frequently administered. Int J Cancer 1990;46:337–40.PubMedGoogle Scholar
  43. 43.
    Naesens L, Balzarini J, De Clercq E. Single-dose adminisration of 9-(2-phosphonylmethoxyethyl)adenine (PMEA) and 9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP) in the prophylaxis of retrovirus infectionin vivo. Antiviral Res 1991;16:53–64.PubMedGoogle Scholar
  44. 44.
    Balzarini J, Holy A, Jindrich J, Dvorakova H, Hao Z, Snoeck R, et al. 9-[(2RS)-3-fluoro-2-phosphonylmethoxypropyl] derivatives of purines: a class of highly selective antiretroviral agentsin vitro andin vivo. Proc Natl Acad Sci USA 1991;88:4961–5.PubMedGoogle Scholar
  45. 45.
    Balzarini J, Holy A, Jindrich J, Naesens L, Snoeck R, Schols D, et al. Differential antiherpes virus and antiretrovirus effects of the (S) and (R) enantiomers of acyclic nucleoside phosphonates: potent and selectivein vitro andin vivo antiretrovirus activities of (R)-9-(2-phosphonomethoxypropyl)-2,6-diaminopurine. Antimicrob Agents Chemother 1993;37:332–8.PubMedGoogle Scholar
  46. 46.
    Ho H-T, Konrad S, Woods K, Luh B, Misco P, Kim C, et al. Cellular metabolism and enzymatic phosphorylation of (2R,5R)-9-[2,5-dihydro-5-(phosphonomethoxy)-2-furanyl] adenine (D4AMPI), an anti-HIV agent [abstract]. Antiviral Res 1992;Suppl 1:Abstr 44.Google Scholar
  47. 47.
    Kenig MD, Arlison SJ, Perkins RM, Poulton ME, Serafinowski HT, Vere Hodge RA, et al. Mode of action of BRL 47923, a potent and selective inhibitor of HIV replication [abstract]. VIIIth International Conference on AIDS; 1992 Jul 19–24; Amsterdam. Abstract Book, no. PoA 2311.Google Scholar
  48. 48.
    St. Clair MH, Richards CA, Spector T, Weinhold KJ, Miller WH, Langlois AJ, et al. 3′-Azido-3′-deoxythymidine triphosphate as an inhibitor and substrate of purified human immunodeficiency virus reverse transcriptase. Antimicrob Agents Chemother 1987;31:1972–7.PubMedGoogle Scholar
  49. 49.
    Votruba I, Travnicek M, Rosenberg I, Otmar M, Merta A, Hebabecky H, et al. Inhibition of avian myeloblastosis virus reverse transcriptase by diphosphates of acyclic phosphonylmethyl nucleotide analogues. Antiviral Res 1990;13:287–93.PubMedGoogle Scholar
  50. 50.
    Balzarini J, Hao Z, Herdewijn P, Johns DG, De Clercq E. Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonylmethoxyethyl)adenine, a potent anti-human immunodeficiency virus compound. Proc Natl Acad Sci USA 1991;88:1499–503.PubMedGoogle Scholar
  51. 51.
    Zimmerman TP, Mahony WB, Prus KL. 3′-Azido-3′-deoxythymidine. An unusual nucleoside analogue that permeates the membrane of human erythrocytes and lymphocytes by nonfacilitated diffusion. J Biol Chem 1987;262:5748–54.PubMedGoogle Scholar
  52. 52.
    Furman PA, Fyfe JA, St Clair MH, Weinhold K, Rideout JL, Freeman GA, et al. Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci USA 1986;83:8333–7.PubMedGoogle Scholar
  53. 53.
    Furman PA, Barry DW. Spectrum and antiviral activity and mechanism of action of zidovudine. Am J Med 1990;85 (Suppl 2A):176–81.Google Scholar
  54. 54.
    Balzarini J, Herdewijn P, De Clercq E. Differential patterns of intracellular metabolism of 2′,3′-didehydro-2′,3′-dideoxythymidine (D4T) and 3′-azido-2′,3′-dideoxythymidine (AZT), two potent anti-HIV compounds. J Biol Chem 1989;264:6127–33.PubMedGoogle Scholar
  55. 55.
    Avramis VI, Markson W, Jackson RL, Gomperts E. Biochemical pharmacology of zidovudine in human T-lymphoblastoid cells (CEM). AIDS 1989;3:417–22.PubMedGoogle Scholar
  56. 56.
    Sommadossi J-P, Carlisle R, Zhou Z. Cellular pharmacology of 3′-azido-3′-deoxythymidine with evidence of incorporation into DNA of human bone marrow cells. Mol Pharmacol 1989;36:9–14.PubMedGoogle Scholar
  57. 57.
    Balzarini J, Broder S. Principles of antiretroviral therapy for AIDS and related diseases. In: De Clercq E, editor. Clinical use of antiviral drugs. Dordrecht: Martinus Nijhoff Publishing, 1988:361–85.Google Scholar
  58. 58.
    Balzarini J, Matthes E, Meeus P, Johns DG, De Clercq, E. The antiretroviral and cytostatic activity, and metabolism of 3′-azido-2′,3′-dideoxythymidine, 3′-fluoro-2′,3′-dideoxythymidine and 2′,3′-dideoxycytidine are highly cell type-dependent. In: Mikanagi K, Nishioka K, Kelley WN, editors. Purine and pyrimidine metabolism in man VI. Part B. New York: Plenum Publishing Corporation, 1989:407–13.Google Scholar
  59. 59.
    Balzarini J, Pauwels R, Baba M, Herdewijn P, De Clercq E, Broder S, et al. Thein vitro andin vivo anti-retrovirus activity, and intracellular metabolism of 3′-azido-2′,3′-dideoxythymidine and 2′,3′-dideoxycytidine are highly dependent on the cell species. Biochem Pharmacol 1988;37:897–903.PubMedGoogle Scholar
  60. 60.
    Ruprecht RM, O'Brien LG, Rossoni LD, Nusinoff-Lehman S. Suppression of mouse viraemia and retroviral disease by 3′-azido-3′-deoxythymidine. Science 1986;323:467–9.Google Scholar
  61. 61.
    Vrang L, Bazin H, Remaud G, Chattopadhyaya J, Öberg B. Inhibition of the reverse transcriptase from HIV by 3′-azido-3′-deoxythymidine triphosphate and its theo analogue. Antiviral Res 1987;7:139–49.PubMedGoogle Scholar
  62. 62.
    Vrang L, Öberg B, Löwer J, Kurth R. Reverse transcriptases from human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIVMAC) are susceptible to inhibition by foscarnet and 3′-azido-3′-deoxythymidine triphosphate. Antimicrob Agents Chemother 1988;32:1733–4.PubMedGoogle Scholar
  63. 63.
    White EL, Parker WB, Macy LJ, Shaddix SC, McCaleb G, Secrist JA III, et al. Comparison of the effect of carbovir, AZT, and dideoxynucleoside triphosphates on the activity of human immunodeficiency virus reverse transcriptase and selected human polymerases. Biochem Biophys Res Commun 1989;161:393–8.PubMedGoogle Scholar
  64. 64.
    Sommadossi J-P, Carlisle R. Toxicity of 3′-azido-3′-deoxythymidine and 9-(1,3-dihydroxy-2-propoxymethyl)guanine for normal human hematopoietic progenitor cellsin vitro. Antimicrob Agents Chemother 1987;31:452–4.PubMedGoogle Scholar
  65. 65.
    Weidner DA, Sommadossi JP. 3′-Azido-3′-deoxythymidine inhibits globin gene transcription in butyric acid-induced K-562 human leukemia cells. Mol Pharmacol 1990;38;797–804.PubMedGoogle Scholar
  66. 66.
    Weidner DA, Sommadossi JP. 3′-Azido-3′-deoxythymidine (AZT) inhibits globin gene transcription in human K-562 leukemia cells [abstract]. Proc Am Assoc Cancer Res 1990; 31:Abstr 2503.Google Scholar
  67. 67.
    Hao Z, Cooney DA, Hartman NR, Perno CF, Fridland A, Devico AL, et al. Factors determining the activity of 2′,3′-dideoxynucleosides in suppressing human immunodeficiency virusin vitro. Mol Pharmacol 1988;34:431–5.PubMedGoogle Scholar
  68. 68.
    Frick LW, Nelson DJ, St Clair MH, Furman PA, Krenitsky TA. Effects of 3′-azido-3′-deoxythymidine on the deoxynucleotide triphosphate pools of cultured human cells. Biochem Biophys Res Commun 1988;154:124–9.PubMedGoogle Scholar
  69. 69.
    August EM, Marongiu ME, Lin T-S, Prusoff WH. Initial studies on the cellular pharmacology of 3′-deoxythymidin-2′-ene (d4T): a potent and selective inhibitor of human immunodeficiency virus. Biochem Pharmacol 1988;37:4419–22.PubMedGoogle Scholar
  70. 70.
    Ho HT, Hitchcock MJM. Cellular pharmacology of 2′,3′-dideoxy-2′,3′-didehydrothymidine, a nucleoside analog active inhibits against human immunodeficiency virus. Antimicrob Agents Chemother 1989;33:844–9.PubMedGoogle Scholar
  71. 71.
    Zhu Z, Ho HT, Hitchcock MJ, Sommadossi J-P. Cellular pharmacology of 2′,3′-didehydro-2′,3′-dideoxythymidine (D4T) in human peripheral blood mononuclear cells. Biochem Pharmacol 1990;39:R14-R19.Google Scholar
  72. 72.
    Mansuri MM, Hitchcock MJM, Buroker RA, Bregman CL, Ghazzouli I, Desiderio JV, et al. Comparison ofin vitro biological properties and mouse toxicities of three thymidine analogs active against human immunodeficiency virus. Antimicrob Agents Chemother 1990;34:637–41.PubMedGoogle Scholar
  73. 73.
    Matthes E, Lehmann Ch, Scholz D, Rosenthal HA, Langen P. Phosphorylation, anti-HIV activity and cytotoxicity of 3′-fluorothymidine. Biochem Biophys Res Commun 1988;153:825–31.PubMedGoogle Scholar
  74. 74.
    Matthes E, Lehmann C, Von Janta-Lipinski M, Scholz D. Inhibition of HIV-replication by 3′-fluoro-modified nucleosides with low cytotoxicity. Biochem Biophys Res Commun 1989;165:488–95.PubMedGoogle Scholar
  75. 75.
    Sterzycki R, Mansuri M, Brankovan V, Buroker R, Ghazzouli I, Hitchcock M, et al. 1-(2,3-dideoxy-3-fluoro-β-D-ribofuranosyl)thymine (FDDT). Improved preparation and evaluation as a potential anti-AIDS agent. Nucleosides Nucleotides 1989;8:1115–7.Google Scholar
  76. 76.
    Cooney DA, Dalal M, Mitsuya H, McMahon JB, Nadkarni M, Balzarini J, et al. Initial studies on the cellular pharmacology of 2′,3′-dideoxycytidine, an inhibitor of HTLV-III infectivity. Biochem Pharmacol 1986;35:2065–8.PubMedGoogle Scholar
  77. 77.
    Ullman B, Coons T, Rockwell S, McCartan, K. Genetic analysis of 2′,3′-dideoxycytidine incorporation into cultured human T lymphoblasts. J Biol Chem 1988;263:12391–6.PubMedGoogle Scholar
  78. 78.
    Cooney DA, Chisena C, Carpen M, Hao Z, Ahluwalia G, Baker DC, et al. 2′,3′-Dideoxycytidinediphosphocholine and 2′ 3′-dideoxycytidinediphosphoethanolamine: phosphodiester metabolites of the anti-HIV agent 2′,3′-dideocycytidine [abstract]. 80th Annual Meeting of the American Association for Cancer Research; 1989 May 24–27; San Francisco. Abstr 2355.Google Scholar
  79. 79.
    Hao Z, Stowe EE, Ahluwalia G, Baker DC, Hebbler AK, Chisena C, et al. Characterization of 2′,3′-dideoxycytidine diphosphocholine and 2′,3′-dideoxycytidine diphosphoethanolamine: prominent phosphodiester metabolites of the anti-HIV nucleoside 2′,3′-dideoxycytidine. Drug Metab Disp. In press.Google Scholar
  80. 80.
    Balzarini J, Cooney DA, Dalal M, Kang G-J, Cupp JE, De Clercq E, et al. 2′,3′-Dideoxycytidine: regulation of its metabolism and anti-retroviral potency by natural pyrimidine nucleosides and by inhibitors of pyrimidine nucleotide synthesis. Mol Pharmacol 1987;32:798–806.PubMedGoogle Scholar
  81. 81.
    Kelley JA, Litterst CL, Roth JS, Vistica DT, Poplack DG, Cooney DA, et al. The disposition and metabolism of 2′,3′-dideoxycytidine, anin vitro inhibitor of human T-lymphotrophic virus type III infectivity, in mice and monkeys. Drug Metab Disp 1987;15:595–601.Google Scholar
  82. 82.
    Johnson MA, Johns DG, Fridland A. 2′,3′-Dideoxynucleoside phosphorylation by deoxycytidine kinase from normal human thymus extracts: activation of potential drugs for AIDS therapy. Biochem Biophys Res Commun 1987;148:1252–8.PubMedGoogle Scholar
  83. 83.
    Starnes MC, Cheng Y-C. Cellular metabolism of 2′,3′-dideoxycytidine, a compound active against human immunodeficiency virusin vitro. J Biol Chem 1987;262:988–91.PubMedGoogle Scholar
  84. 84.
    Cheng Y-C, Dutschman GE, Bastow KF, Sarngadharan MG, Ting RYC. Human immunodeficiency virus reverse transcriptase. General properties and its interactions with nucleoside triphosphate analogs. J Biol Chem 1987;262:2187–9.PubMedGoogle Scholar
  85. 85.
    Hao Z, Cooney DA, Farqhar D, Perno CF, Zhang K, Wilson Y, et al. Potent DNA chain termination activity and selective inhibition of human immunodeficiency virus reverse transcriptase by 2′,3′-dideoxyuridine-5′-triphosphate (ddUTP). Mol Pharmacol 1990;37:157–63.PubMedGoogle Scholar
  86. 86.
    Mitsuya H, Jarrett RF, Matsukura M, Di Marzo Veronese F, Devico AL, Sarngadharan MG, et al. Long-term inhibition of human T-lymphotropic virus type III/lymphadenopathyassociated virus (human immunodeficiency virus) DNA synthesis and RNA expression in T cells protected by 2′,3′-dideoxynucleosidesin vitro. Proc Natl Acad Sci USA 1987;84:2033–7.PubMedGoogle Scholar
  87. 87.
    Yarchoan R, Perno CF, Thomas RV, Klecker RW, Allain J-P, Wills RJ, et al. Phase I studies of 2′,3′-dideoxycytidine in severe human immunodeficiency virus infection as a single agent and alternating with zidovudine (AZT). Lancet 1988;1:76–80.PubMedGoogle Scholar
  88. 88.
    Yarchoan R, Mitsuya H, Myers CE, Broder, S. Clinical pharmacology of 3′-azido-2′,3′-dideoxythymidine (zidovudine) and related dideoxynucleosides. N Engl J Med 1989;321:726–38.PubMedGoogle Scholar
  89. 89.
    Cook HW, Spence MW. Dideoxycytidine, an anti-HIV drug, selectively inhibits growth but not phosphatidylcholine metabolism in neuroblastoma in glioma cells. Neurochem Res 1989;14:279–84.PubMedGoogle Scholar
  90. 90.
    Sommadossi J-P, Schinazi RF, Chu CK, Xie M-Y. Comparison of cytotoxicity of the (−)- and (+)-enantiomer of 2′,3′-dideoxy-3′-thiacytidine in normal human bone marrow progenitor cells. Biochem Pharmacol 1992;44:1921–5.PubMedGoogle Scholar
  91. 91.
    Cammack N, Rouse P, Marr CLP, Reid PJ, Boehme RE, Coates JAV, et al. Cellular metabolism of (−)enantiomeric 2′-deoxy-3′-thiacytidine. Biochem Pharmacol 1992;43:2059–64.PubMedGoogle Scholar
  92. 92.
    Furman PA, Davis M, Liotta DC, Paff M, Frick LW, Nelson DJ, et al. The anti-hepatitis B virus activities, cytotoxicities, and anabolic profiles of the (−) and (+) enantiomers ofcis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine. Antimicrob Agents Chemother 1992;36:2686–92.PubMedGoogle Scholar
  93. 93.
    Schinazi RF, Boudinot FD, Ibrahim SS, Manning C, McClure HM, Liotta DC. Pharmacokinetics and metabolism of racemic 2′,3′-dideoxy-5-fluoro-3′-thiacytidine in Rhesus monkeys. Antimicrob Agents Chemother 1992;36:2432–8.PubMedGoogle Scholar
  94. 94.
    Cooney DA, Ahluwalia G, Mitsuya H, Fridland A, Johnson M, Hao Z, et al. Initial studies on the cellular pharmacology of 2′,3′-dideoxyadenosine, an inhibitor of HTLV-III infectivity. Biochem Pharmacol 1987;36:1765–8.PubMedGoogle Scholar
  95. 95.
    Ahluwalia G, Cooney DA, Mitsuya H, Fridland A, Flora KP, Hao Z, et al. Initial studies on the cellular pharmacology of 2′,3′-dideoxyinosine, an inhibitor of HIV infectivity. Biochem Pharmacol 1987;36:3797–800.PubMedGoogle Scholar
  96. 96.
    Plunkett W, Cohen SS. Two approaches that increase the activity of analogs of adenine nucleosides in animal cells. Cancer Res 1975;35:1547–54.PubMedGoogle Scholar
  97. 97.
    Johnson MA, Fridland A. Phosphorylation of 2′,3′-dideoxyinosine by cytosolic 5′-nucleotidase of human lymphoid cells. Mol Pharmacol 1989;36:291–5.PubMedGoogle Scholar
  98. 98.
    Johnson MA, Ahluwalia G, Connelly MC, Cooney DA, Broder S, Johns DG, et al. Metabolic pathways for the activation of the antiretroviral agent 2′,3′-dideoxyadenosine in human lymphoid cells. J Biol Chem 1988;263:15354–7.PubMedGoogle Scholar
  99. 99.
    Carson DA, Haertle T, Wasson DB, Richman DD. Biochemical genetic analysis of 2′,3′-dideoxyadenosine metabolism in human T lymphocytes. Biochem Biophys Res Commun 1988;151:788–93.PubMedGoogle Scholar
  100. 100.
    Plagemann PCW, Woffendin C. Permeation and salvage of dideoxyadenosine in mammalian cells. Mol Pharmacol 1989;36:182–5.Google Scholar
  101. 101.
    Gangemi JD, Cozens RM, De Clercq E, Balzarini J, Hochkeppel H-K. 9-(2-Phosphonylmethoxyethyl)adenine in the treatment of murine acquired immunodeficiency disease and opportunistic herpes simplex virus infections. Antimicrob Agents Chemother 1989;33:1864–8.PubMedGoogle Scholar
  102. 102.
    Hartmann K, Donath A, Beer B, Egberink HF, Horzinek MC, Lutz H, et al. Use of two virustatica (AZT, PMEA) in the treatment of FIV and of FeLV seropositive cats with clinical symptoms. Vet Immunol Immunopathol 1992;35:167–75.PubMedGoogle Scholar
  103. 103.
    Hoover EA, Ebner JP, Zeidner NS, Mullins JI. Phosphonylmethoxyethyladenine (PMEA) therapy of FeLV-FAIDS infection in cats [abstract]. Antiviral Res 1990(Suppl 1):Abstr 112.Google Scholar
  104. 104.
    Palu G, Stefanelli S, Rassu M, Parolin C, Balzarini J, De Clercq E. Cellular uptake of phosphonylmethoxyalkylpurine derivatives. Antiviral Res 1991;16:115–19.PubMedGoogle Scholar
  105. 105.
    Bronson JJ, Ho H-T, De Boeck H, Woods K, Ghazzouli I, Martin JC, et al. Biochemical pharmacology of acyclic nucleotide analogues. Ann N Y Acad Sci 1990;616:398–407.PubMedGoogle Scholar
  106. 106.
    Holy A, Votruba I, Merta A, Cerny J, Vesely J, Vlach J, et al. Acyclic nucleotide analogues: synthesis, antiviral activity and inhibitory effects on some cellular and virus-encoded enzymesin vitro. Antiviral Res 1990;13:295–312.PubMedGoogle Scholar
  107. 107.
    Merta A, Votruba I, Jindrich J, Holy A, Cihlar T, Rosenberg I, et al. Phosphorylation of 9-(2-phosphonomethoxyethyl) adenine and 9-(5)-(3-hydroxy-2-phosphonomethoxypropyl)adenine by AMP(dAMP) kinase from L1210 cells. Biochem Pharmacol 1992;44:2067–78.PubMedGoogle Scholar
  108. 108.
    Balzarini J, De Clercq E. 5-Phosphoribosyl 1-pyrophosphate synthetase converts the acyclic nucleoside phosphonates 9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and 9-(2-phosphonylmethoxyethyl)adenine directly to their antivirally active diphosphate derivatives. J Biol Chem 1991;266:8686–9.PubMedGoogle Scholar
  109. 109.
    Balzarini J, De Clercq E. Conversion of acyclic nucleoside phosphonates to their diphosphate derivatives by 5-phosphoribosyl-1 -pyrophosphate (PRPP) synthetase. In: Harkness RA, Elion G, Zöllner N, editors. Purine and pyrimidine metabolism in man VII. Part A. New York: Plenum Press, 1991:29–32.Google Scholar
  110. 110.
    Balzarini J, Pérez-Pérez M-J, San-Félix A, Schols D, Perno C-F, Vandamme AM, et al. 2′,5′-Bis-O-(tert-butyldimethylsilyl)-3′-spiro-5′'-(4′'-amino-1′',2′'-oxathiole-2′',2′'-dioxide) pyrimidine (TSAO) nucleoside analogues: highly selective inhibitors of human immunodeficiency virus type 1 that are targeted at the viral reverse transcriptase. Proc Natl Acad Sci USA 1992;89:4392–6.PubMedGoogle Scholar
  111. 111.
    Balzarini J, Pérez-Pérez M-J, San-Félix A, Velazquez S, Camarasa M-J, De Clercq E. [2′,5′-Bis-O-(tert-butyldimethylsilyl)]-3′-spiro-5′'-(4′'-amino-1′',2′'-oxathiole-2′',2′'-dioxide) (TSAO) derivatives of purine and pyrimidine nucleosides as potent and selective inhibitors of human immunodeficiency virus type 1. Antimicrob Agents Chemother 1992;36:1073–80.PubMedGoogle Scholar
  112. 112.
    Camarasa M-J, Pérez-Pérez M-J, San-Félix A, Balzarini J, De Clercq E. 3′-Spiro nucleosides, a new class of specific human immunodeficiency virus type 1 inhibitors: synthesis and antiviral activity of [2′,5′-bis-O-(tert-butyldimethylsilyl)-β-D-xylo- and-ribofuranosyl]-3′-spiro-5′'-[4′'-amino-1′',2′'-oxathiole-2′',2′'-dioxide] (TSAO) pyrimidine nucleosides. J Med Chem 1992;35:2721–7.PubMedGoogle Scholar
  113. 113.
    Pérez-Pérez M-J, San-Félix A, Balzarini J, De Clercq E, Camarasa M-J. TSAO Analogues. Stereospecific synthesis and anti-HIV-1 activity of [2′,5′-bis-O-(tert-butyldimethylsilyl)-β-D-ribofuranosyl]-3′-spiro-5′'-(4′'-amino-1′',2′'-oxathiole-2′',2′'-dioxide) pyrimidine and pyrimidine-modified nucleosides. J Med Chem 1992;35:2988–95.PubMedGoogle Scholar
  114. 114.
    Pérez-Pérez M-J, San-Félix A, Camarasa M-J, Balzarini J, De Clercq E. Synthesis of [1-[2′,5′-bis-O-(tert-butyldimethylsilyl)-β-D-xylo- andβ-D-ribofuranosyl]thymine]-3′-spiro-5′'-[4′'-amino-1′',2′'-oxathiole-2′' 2′'-dioxide] (TSAO). A novel type of specific anti-HIV agents. Tetrahedron Lett 1992;33:3029–32.Google Scholar
  115. 115.
    Balzarini J, Velazquez S, San-Félix A, Karlsson A, Pérez-Pérez M-J, Camarasa M-J, et al. The HIV-1-specific TSAO-purine analogues show a resistance spectrum that is different from the HIV-1-specific non-nucleoside analogues. Mol Pharmacol 1993;43:109–14.PubMedGoogle Scholar
  116. 116.
    Balzarini J, Pérez-Pérez M-J, San-Félix A, Camarasa M-J, Bathurst IC, Barr PJ, et al. Kinetics of inhibition of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase by the novel HIV-1-specific nucleoside analogue 1-[2′,5′-bis-O-(tert-butyldimethylsilyl)-β-D-ribofuranosyl] 3′-spiro-5′'-[4′'-amino-1′',2′'-oxathiole-2′',2′'-dioxide]-thymine (TSAO-T). J Biol Chem 1992;267:11831–8.PubMedGoogle Scholar
  117. 117.
    Balzarini J, Pérez-Pérez M-J, San-Félix A, Velasquez S, Camarasa M-J, Vandamme A-M, et al. TSAO Derivatives: a novel class of HIV-1-specific inhibitors. In: Krohn K, Kirst H, Maas H, editors. Antibiotics and antiviral compounds. Chemical synthesis and modification. Weinheim: VCH Verlagsgesellschaft, 1993:403–20.Google Scholar
  118. 118.
    Balzarini J, Camarasa M-J, Karlsson A. TSAO derivatives: highly specific human immunodeficiency virus type 1 (HIV-1) reverse transcriptase inhibitors. Drugs Future 1993;18:1043–55.Google Scholar
  119. 119.
    Balzarini J, Karlsson A, Vandamme A-M, Pérez-Pérez M-J, Vrang L, Öberg B, et al. Human immunodeficiency virus type 1 (HIV-1) strains selected for resistance against the HIV-1-specific [2′,5′-bis-O-(tert-butyldimethylsilyl)-3′-spiro-5′'-(4′'-amino-1′',2′'-oxathiole-2′', 2′'-dioxide)]-β-D-pentofuranosyl (TSAO) nucleoside analogues retain sensitivity to HIV-1-specific nonnucleoside inhibitors. Proc Natl Acad Sci USA 1993;90:6952–6.PubMedGoogle Scholar
  120. 120.
    Balzarini J, Karlsson A, Pérez-Pérez M-J, Vrang L, Walbers J, Zhang H, et al. HIV-1-Specific reverse transcriptase inhibitors show differential activity against HIV-1 mutant strains containing different amino acid substitutions in the reverse transcriptase. Virology 1993;192:246–53.PubMedGoogle Scholar
  121. 121.
    Dueweke TJ, Pushkarskaya T, Poppe SM, Swaney SM, Zhao JQ, Chen ISY, et al. A mutation in reverse transcriptase of bis(heteroaryl)piperazine-resistant human immunodeficiency virus type 1 that confers increased sensitivity to other nonnucleoside inhibitors. Proc Natl Acad Sci USA 1993;90:4713–17.PubMedGoogle Scholar
  122. 122.
    Larder BA, Kemp SD. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 1989;246:1155–8.PubMedGoogle Scholar
  123. 123.
    Larder BA, Darby G, Richman DD. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 1989;243:1731–4.PubMedGoogle Scholar
  124. 124.
    St Clair MH, Martin JL, Tudor-Williams G, Bach MC, Vavro CL, King DM, et al. Resistance to ddI and sensitivity to AZT induced by a mutation in HIV-1 reverse transcriptase. Science 1991;253:1557–9.PubMedGoogle Scholar
  125. 125.
    Kellam P, Boucher CAB, Larder, BA. Fifth mutation in human immunodeficiency virus type 1 reverse transcriptase contributes to the development of high-level resistance to zidovudine. Proc Natl Acad Sci USA 1992;89:1934–8.PubMedGoogle Scholar
  126. 126.
    Schinazi RF, Lloyd RM Jr, Nguyen M-H, Cannon DL, McMillan A, Ilksoy N, et al. Characterization of human immunodeficiency viruses resistant to oxathiolane-cytosine nucleosides. Antimicrob Agents Chemother 1993;37:875–81.PubMedGoogle Scholar

Copyright information

© Royal Dutch Association for the Advancement of Pharmacy 1994

Authors and Affiliations

  • Jan Balzarini
    • 1
  1. 1.Rega Institute for Medical ResearchKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations