Communications in Mathematical Physics

, Volume 23, Issue 3, pp 199–230

Local observables and particle statistics I

  • Sergio Doplicher
  • Rudolf Haag
  • John E. Roberts
Article

Abstract

We consider the family of those states which become asymptotically indistinguishable from the vacuum for observations in far away regions of space. The pure states of this family may be subdivided into superselection sectors labelled by generalized charge quantum numbers. The principle of locality implies that within this family one may define a natural product composition (leading for instance from single particle states ton-particle states). Intrinsically associated with then-fold product of states of one sector there is a unitary representation ofP(n), the permutation group ofn elements, analogous in its role to that arising in wave mechanics from the permutations of the arguments of ann-particle wave function. We show that each sector possesses a “statistics parameter” λ which determines the nature of the representation ofP(n) for alln and whose possible values are 0, ±d−1 (d a positive integer). A sector with λ ≠ 0 has a unique charge conjugate (“antiparticle” states); if λ=d−1 the states of the sector obey para-Bose statistics of orderd, if λ=−d−1 they obey para-Fermi statistics of orderd. Some conditions which restrict λ to ± 1 (ordinary Bose or Fermi statistics) are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doplicher, S., Haag, R., Roberts, J. E.: Fields, observables and gauge transformations I. Commun. math. Phys.13, 1–23 (1969).Google Scholar
  2. 2.
    —— —— —— Fields, observables and gauge transformations II. Commun. math. Phys.15, 173–200 (1969).Google Scholar
  3. 3.
    Wick, G. C., Wightman, A. S., Wigner, E. P.: The intrinsic parity of elementary particles. Phys. Rev.88, 101–105 (1952).Google Scholar
  4. 4.
    Borchers, H. J.: A remark on a theorm of B. Misra. Commun. math. Phys.4, 315–323 (1967).Google Scholar
  5. 5.
    Stolt, R. A., Taylor, J. R.: Classification of paraparticles. Phys. Rev. D,1, 2226–2228 (1970).Google Scholar
  6. 6.
    Hartle, J. B., Stolt, R. A., Taylor, J. R.: Paraparticles of infinite order. Phys. Rev. D2, 1759–1760 (1970).Google Scholar
  7. 7.
    Greenberg, O. W., Messiah, A. M. L.: Symmetrization postulate and its experimental formulation. Phys. Rev.136, B248–267 (1964).Google Scholar
  8. 8.
    Drühl, K., Haag, R., Roberts, J. E.: On parastatistics. Commun. math. Phys.18, 204–226 (1970).Google Scholar
  9. 9.
    Kadison, R. V.: The trace in finite operator algebras. Proc. Amer. Math. Soc.12, 973–977 (1961).Google Scholar
  10. 10.
    Stinespring, W. F.: Positive functions onC*-algebras. Proc. Amer. Math. Soc.6, 211–216 (1955).Google Scholar
  11. 11.
    Eilenberg, S., Kelly, G. M.: Closed categories. In: Proceedings of the Conference on Categorical Algebra, La Jolla 1965. Berlin, Heidelberg, New York: Springer 1966.Google Scholar
  12. 12.
    Weyl, H.: The classical groups. Princeton: Princeton University Press 1946.Google Scholar
  13. 13.
    Powers, R. T.: Representations of uniformly hyperfinite algebras and their associated von Neumann rings. Ann. Math.86, 138–171 (1967).Google Scholar
  14. 14.
    Glimm, J., Kadison, R. V.: Unitary operators inC*-algebras. Pacific J. Math.10, 547–556 (1960).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Sergio Doplicher
    • 1
    • 4
  • Rudolf Haag
    • 2
  • John E. Roberts
    • 3
  1. 1.Centre Universitaire de Marseille-LuminyFrance
  2. 2.II. Inst. of Theoret. Phys.Univ. HamburgGermany
  3. 3.Dept. of PhysicsPrinceton UniversityUSA
  4. 4.Instituto di Fisica „Guglielmo Marconi“Roma

Personalised recommendations