Experiments in Fluids

, Volume 17, Issue 6, pp 397–404 | Cite as

Thin filament infrared pyrometry: instantaneous temperature profile measurements in a weakly turbulent hydrocarbon premixed flame

  • S. Pauzin
  • A. Giovannini
  • B. Bédat


Black body radiation from a fibre ofβ SiC can be used to investigate the temperature profile in a premixed flame. An infrared scanner determines the radiation intensity of the fibre, which is related to the fibre temperature by a calibration law. A fast time constant and excellent spatial resolution of the fibre make the method a very helpful tool to study the turbulent flames.

List of symbols



C, B

temperature coefficient calibration


laminar flame thickness


diameter of the fibre


form factor


exit diameter of burner


convective heat coefficient

\(\vec I\)

acoustic intensity vector


integral length scale of turbulence


acoustic pressure


Reynolds number






root mean square velocity


laminar combustion velocity


velocity at the burner exit

\(\vec v\)

acoustic velocity vector without flow

Coordinate symbol


radial axis


fibre axis


axial axis

Greek symbol


diffusion length along the fibre




equivalence ratio


thermal conductivity


heat capacity


Stefan-Boltzmann constant


time response of the fibre








Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arconada A;Argiriou A;Papini F;Pasquetti R (1987) La mesure en thermographie infrarouge: calibration et traitement du signal. Journal of modern optics 34: 1237–1335Google Scholar
  2. 2.
    Ballantyne A;Moss JB (1977) Fine wire thermocouple measurements of fluctuating temperature. Combust Sci and Technol 17: 63–72Google Scholar
  3. 3.
    Bédat B (1992) Contribution à l'étude expérimentale aérothermoacoustique d'une flamme prémélangée turbulente dans un environnement non confiné. PhD thesis: E.N.S.A.E.Google Scholar
  4. 4.
    Bédat B; Pauzin S; Giovaninni A; Biron D (1991) Acoustic and temperature measurements in an open turbulent premixed flame. In: heat transfer in internal combustion engines: The Eurotherm Seminar, Toulouse December 1991Google Scholar
  5. 5.
    Bédat B; Biron D; Pauzin S to be submitted: Experimental acoustical study of weakly turbulent premixed flame. Combust Sci and TechnolGoogle Scholar
  6. 6.
    Bendat JS; Piersol AG (1980) Engineering applications of correlation and spectral analysis. John Wiley & SonsGoogle Scholar
  7. 7.
    Bradley D;Matthews KJ (1968) Measurements of high gas temperatures with fine wire thermocouple. J Mech Eng Sci 10: 299–305Google Scholar
  8. 8.
    Carslaw HS; Jaeger JC (1959) Conduction of heat in solids. Oxford University PressGoogle Scholar
  9. 9.
    Chiu H;Summerfield M (1974) Theory of combustion noise. Acta Astronautica: 1: 967–984Google Scholar
  10. 10.
    Creff R; Andre P; Hostache G (1984) Description d'un microthermomètre appliqué à la mesure de températures de fluides instationnaires. In Les mesures thermiques: Application aux systèmes et processus industriels: diagnostic, controle et conduite: Société Française des ThermiciensGoogle Scholar
  11. 11.
    Eckbreth AC (1988) Laser diagnostics for combustion temperature and species. Abacus PressGoogle Scholar
  12. 12.
    Fahy FJ (1987) Sound intensity. Elsevier applied scienceGoogle Scholar
  13. 13.
    Gade S (1982) Sound intensity. Technical Report 3: Brüel & KjaerGoogle Scholar
  14. 14.
    Gaussorgues G (1984) La thermographie infra-rouge. Ed technique et documentation LavoisierGoogle Scholar
  15. 15.
    Heitor MV;Whitelaw JH (1986) Velocity, temperature and species characteristics of the flow in a gas-turbine combustor. Combust and Flame: 64: 1–32Google Scholar
  16. 16.
    Hurle IR;Sugden RB;Thomas A (1968) Sound emission from turbulent premixed flames. Proc Roy Soc 303: 409–427Google Scholar
  17. 17.
    Katsuki M; Misutani Y; Chikami M; Kittaka T (1986) Sound emission from a turbulent flame. In 21st International Symposium on Combustion: 1543–1550: The Combustion InstituteGoogle Scholar
  18. 18.
    Kuo KK (1986) Principles of Combustion. J Wiley and SonsGoogle Scholar
  19. 19.
    Peters N (1986) Laminar flamelet concepts in turbulent combustion. In 21st International Symposium on Combustion 1231–1250: The Combustion InstituteGoogle Scholar
  20. 20.
    Poinsot T (1987) Analyse des instabilités de combustion des foyers turbulents prémélangés. PhD thesis: Université Paris-Sud OrsayGoogle Scholar
  21. 21.
    Sbaibi A;Lecordier JC;Paranthoen P (1987) Réponse en fréquence d'un couple thermoélectrique dans un environnent purement radiatif ou convectif. Entropie: 135: 49–53Google Scholar
  22. 22.
    Siegel R; Howell JR (1981) Thermal radiation heat transfer. Hemisphere Publishing CorporationGoogle Scholar
  23. 23.
    Strahle W (1971) On combustion generated noise. J Fluid Mech 49: 399–414Google Scholar
  24. 24.
    Touloukian YS (1967) Thermal properties of high temperature solid materials, Vol 5-Nonoxydes and their solutions and mixture including miscellaneous ceramic materials properties: 118–140. MacMillanGoogle Scholar
  25. 25.
    Vilimpoc V; Goss LP (1988) SiC-based thin-filament pyrometry: theory and thermal properties. In 22nd International Symposium on Combustion: 1907–1914: The Combustion InstituteGoogle Scholar
  26. 26.
    Yoshida A (1986) Convective heat transfer and film cooling in turbomachinery. V.K.I. Lecture series: Rhode Saint Genese, BelgiumGoogle Scholar
  27. 27.
    Yoshida A;Günther R (1980) Experimental investigation of thermal structure of turbulent premixed flames. Combust and Flame 38: 249–258Google Scholar
  28. 28.
    Yule AJ; Taylor DS; Chigier NA (1978) On line digital compensation and processing of thermocouple on signals for temperature measurements in turbulent flames. A.I.A.A Paper: 1978-30Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • S. Pauzin
    • 1
  • A. Giovannini
    • 2
  • B. Bédat
    • 3
  1. 1.Dépt. d'Etudes et de Recherches en Mécanique et Energétique des Systèmes O.N.E.R.A/C.E.R.T.Toulouse CedexFrance
  2. 2.Dépt. de MécaniqueU.F.R, M.I.G, Université Paul SabatierToulouseFrance
  3. 3.Combustion group, Energy & Environment DivisionLawrence Berkeley LaboratoryBerkeley

Personalised recommendations