Journal of Fluorescence

, Volume 4, Issue 1, pp 103–109 | Cite as

Quenching of fluorescence by light: A new method to control the excited-state lifetimes and orientations of fluorophores

  • Ignacy Gryczynski
  • Józef Kuśba
  • Valery Bogdanov
  • Joseph R. Lakowicz
Methods and Instrumentation

Abstract

We report steady-state and time-resolved studies of quenching of fluorescence by light i.e. “light quenching.” The dyes rhodamine B (RhB) and 4-dicyanomethylene-2-methyl-6(p-dimethamino)-4H-pyrane (DCM) were excited in the anti-Stokes region from 560 to 615 nm. At a high illumination power the intensities of DCM and RhB were sublinear with incident power, an effect we believe is due to stimulated emission, andnot ground-state depopulation. The extent of light quenching was proportional to the amplitude of the emission spectrum at the incident wavelength, as expected for light-stimulated decay from the excited state. Control measurements at a decreased average illumination power, and in solvents of various viscosities, indicated that the effect was not due to undesired photochemical processes. Importantly, the frequency-domain intensity decays remained single exponentials, and the lifetimes were unchanged with light quenching, which suggests that the effect was not due to heating or other photochemical effects. These results are consistent with a quenching process which occurs within the quenching pulse. Importantly, as expected for light quenching with a single pulsed laser beam, the time 0 anisotropies of RhB and DCM were decreased due to orientation-dependent quenching of the excited-state population. In closing we discuss some possible future applications of light quenching to studies of dynamic processes.

Key Words

Light quenching excited-state lifetime fluorophores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Gryczyński, V. Bogdanov, and J. R. Lakowicz (1994)Biophys. Chem.,49, 223–232.Google Scholar
  2. 2.
    J. R. Lakowicz, I. Gryczyński, V. Bogdanov, and J. Kusba (1994)J. Phys. Chem.,98, 334–342.Google Scholar
  3. 3.
    M. D. Galanin, B. P. Kirsanov, and Z. A. Chizhikova (1969)Sov. Phys. JETP Lett. 9(9), 502–507.Google Scholar
  4. 4.
    A. I. Butko, E. S. Voropai, V. A. Gaisenok, V. A. Saechnikov, and A. M. Sarzhevskii (1982)Opt. Spectrosc. (USSR) 52(2), 153–156.Google Scholar
  5. 5.
    Y. T. Mazurenko, V. V. Danilov, and S. I. Vorontsova (1973)Opt. Spectrosc. (USSR) 35(1), 107–108.Google Scholar
  6. 6.
    J. R. Lakowicz and B. P. Maliwal (1985)Biophys. Chem. 21, 61–78.Google Scholar
  7. 7.
    J. R. Lakowicz, G. Laczko, and I. Gryczynski (1986)Rev. Sci. Instrum 57, 2499–2506.Google Scholar
  8. 8.
    G. Laczko, J. R. Lakowicz, I. Gryczynski Z. Gryczynski, and H. Malak (1990)Rev. Sci. Instrum. 61, 2331–2337.Google Scholar
  9. 9.
    A. B. Meyers, M. A. Pereira, P. L. Holt, and R. M. Hochstrasser (1987)J. Chem. Phys. 86, 5146–5155.Google Scholar
  10. 10.
    J. E. Hansen, S. J. Rosenthal, and G. R. Fleming (1992)J. Chem. Phys. 96, 3034–3040.Google Scholar
  11. 11.
    J. R. Lakowicz, I. Gryczynski, J. Kuśba, and V. Bogdanov (1994)Photochem. Photobiol., submitted for publication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Ignacy Gryczynski
    • 1
  • Józef Kuśba
    • 1
  • Valery Bogdanov
    • 1
  • Joseph R. Lakowicz
    • 1
  1. 1.Center for Fluorescence Spectroscopy, Department of Biological ChemistryUniversity of Maryland at Baltimore School of MedicineBaltimore
  2. 2.Faculty of Applied Physics and MathematicsTechnical University of GdańskGdanskPoland

Personalised recommendations