Annals of Global Analysis and Geometry

, Volume 2, Issue 2, pp 141–151

An elementary proof of the Cheeger-Gromoll splitting theorem

  • Jost Eschenburg
  • Ernst Heintze
Article

Abstract

We give a short proof of the Cheeger-Gromoll Splitting Theorem which says that a line in a complete manifold of nonnegative Ricci curvature splits off isometrically. Our proof avoids the existence and regularity theory of elliptic PDE's.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Berger, P. Gauduchón, E. Mazet: Le spectre d'une variété Riemannienne. — Springer L. N.194 (1971)Google Scholar
  2. 2.
    E. Calabi: An extension of E. Hopf's maximum principle with an application to Riemannian geometry. Duke Math. J.25 (1957), 45–56Google Scholar
  3. 3.
    J. Cheeger, D. Gromoll: The Splitting theorem for manifolds of nonnegative Ricci curvature. J. Diff. Geom.6 (1971), 119–128Google Scholar
  4. 4.
    S. Cohn-Vossen: Totalkrümmung und geodätische Linien auf einfach zusammenhängenden, offenen, vollständigen Flächenstücken. Math. Sb.43 (1936), 139–163Google Scholar
  5. 5.
    J.-H. Eschenburg: Stabilitätsverhalten des Geodätischen Flusses Riemannscher Mannigfaltigkeiten. — Bonner Math. Schr.87 (1976)Google Scholar
  6. 6.
    J.-H. Eschenburg, J.J. O'Sullivan: Jacobi tensors and Ricci curvature. Math. Ann.252 (1980), 1–26Google Scholar
  7. 7.
    E. Hopf: Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typ. Sitzungsber. Preuss. Ak. d. Wiss.19 (1927), 147–152Google Scholar
  8. 8.
    V.A. Toponogov: Riemannian spaces which contain straight lines. AMS Translations (2)37 (1964), 287–290Google Scholar
  9. 9.
    H. Wu: An elementary method in the study of nonnegative curvature. Acta Math.142 (1979), 57–78Google Scholar

Copyright information

© Kluwer Academic Publishers 1984

Authors and Affiliations

  • Jost Eschenburg
    • 1
  • Ernst Heintze
    • 1
  1. 1.Mathematisches Institut der WWUMünsterFed. Rep. of Germany

Personalised recommendations