Advertisement

Biotechnology Techniques

, Volume 3, Issue 4, pp 227–232 | Cite as

PHB recovery by hypochlorite digestion of non-PHB biomass

  • E. Berger
  • B. A. Ramsay
  • J. A. Ramsay
  • C. Chavarie
  • G. Braunegg
Article

Summary

Hypochlorite digestion of bacterial biomass from intracellular poly-β-hydroxybutyrate (PHB) has not been used on a large scale since it has been reported to severely degrade PHB. In this study, to minimize degradation, the initial biomass concentration, digestion time and pH of the hypochlorite solution were optimized. Consequently, PHB of 95% purity with a weight average molecular weight (MW) of 600,000 and a polydispersity index (PI) of 4.5 was recovered from biomass initially containing PHB with a MW of 1,200,000 and a PI of 3.

Keywords

Biomass Molecular Weight Hypochlorite Average Molecular Weight Biomass Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akita, S., Einaga, Y., Miyaki, Y., and Fujita, H. (1976). Macromolecules. 9, 774–780.Google Scholar
  2. Alper, R. Lundgren, D.G., Marchessault, R.H., and Cote, W.A. (1963). Biopolymers. 1, 545–556.Google Scholar
  3. Barham, P.J., and Selwood, A. (1982). Eur. Pat. Appl. 58, 480.Google Scholar
  4. Braunegg, G., Sonnleitner, B., and Lafferty, R.M. (1978). Eur. J. Appl. Microbiol. Biotechnol. 6, 29–37.Google Scholar
  5. Dawes, E.A., and Senior, P.J. (1973). Adv. Microbiol. Physiol. 10, 135–266.Google Scholar
  6. Dawkins, J.V. (1968). J. Macromol. Sci. B. 2, 623–639.Google Scholar
  7. Doi, Y., Tamaki, A., Kunioka, M., and Soga, K. (1988). Appl. Microbiol. Biotechnol. 28, 330–334.Google Scholar
  8. Grubisic, Z., Rempp, P., and Benoit, H. (1967). J. Polym. Sci. B. 5, 753–759.Google Scholar
  9. Holmes, P.A., and Lim, G.B. (1985). Europ. Pat. Appl. 145, 233.Google Scholar
  10. Lafferty, R.M., and Heinzle, E. (1978). U.S. Pat. 4,138,291.Google Scholar
  11. Lundgren, D.G., Alper, R., Schnaitman, C., and Marchessault, R.N. (1965). J. Bacteriol. 89, 245–251.Google Scholar
  12. Majid, M.I.A., Pouton, C.W., and Notarianni, L.J. (1987). J. Pharm. Pharmacol. 34, 34P.Google Scholar
  13. Nuti, M.P., de Bertoldi, M., and Lepidi, A.A. (1972). Can. J. Microbiol. 18, 1257–1261.Google Scholar
  14. Senior, P.J. (1984). In: Continuous Culture, A.C.R. Dean, D.C. Ellwood, and C.G.T. Evans, eds. vol. 8, pp. 266–271, Chichester, U.K.: Ellis-Horwood Ltd.Google Scholar
  15. Schmidt, J., Biederman, B., and Schmiechen, H. (1985). Ger. (East) Pat. DD 223, 428.Google Scholar
  16. Vanlautern, N., and Gilain, J. (1982). U.S. Pat. 4,310,684.Google Scholar
  17. Walker, J., Whitton, J.R., and Alderson, B. (1982). Eur. Pat. Appl. 46, 017.Google Scholar
  18. Williamson, D.H., and Wilkinson, J.F. (1958). J. Gen. Microbiol. 19, 198–203Google Scholar

Copyright information

© Science & Technology Letters 1989

Authors and Affiliations

  • E. Berger
    • 1
  • B. A. Ramsay
    • 1
  • J. A. Ramsay
    • 1
  • C. Chavarie
    • 1
  • G. Braunegg
    • 2
  1. 1.Chemical EngineeringEcole Polytechnique de MontrealMontrealCanada
  2. 2.Institut für BiotechnologieTechnische UniverstitätGrazAustria

Personalised recommendations