Advertisement

Acta Mathematica Hungarica

, Volume 65, Issue 4, pp 403–419 | Cite as

The strong summability of Fourier transforms

  • D. V. Giang
  • F. Móricz
Article

Keywords

Strong Summability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Auscher and M. J. Carro, On relations between operators onR N,T N, andZ N,Studia Math.,101 (1992), 166–182.Google Scholar
  2. [2]
    L. Carleson, On convergence and growth of partial sums of Fourier series,Acta Math.,116 (1966), 135–157.Google Scholar
  3. [3]
    R. A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Proc., Conf., Edwardsville, Ill., 1967), pp. 235–255; Southern Illinois Univ. Press (Carbondale, Ill., 1968).Google Scholar
  4. [4]
    J. Marcinkiewicz, Sur la sommabilité forte de séries de Fourier,J. London Math. Soc.,14 (1939), 162–168.Google Scholar
  5. [5]
    A. Máté, Convergence of Fourier series of square integrable functions,Mat. Lapok.,18 (1967), 195–242 (Hungarian); MR 39 # 701.Google Scholar
  6. [6]
    E. M. Stein,Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press (Princeton, New Jersey, 1970).Google Scholar
  7. [7]
    E. M. Stein and G. Weiss,Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press (Princeton, New Jersey, 1971).Google Scholar
  8. [8]
    E. C. Titchmarsh,Introduction to the Theory of Fourier Integrals, Clarendon Press (Oxford, 1937).Google Scholar
  9. [9]
    A. Zygmund, On the convergence and summability of power series on the circle of convergence (II),Proc. London Math. Soc.,47 (1942), 326–350.Google Scholar
  10. [10]
    A. Zygmund,Trigonometric Series, Cambridge Univ. Press (Cambridge, 1959).Google Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • D. V. Giang
    • 1
  • F. Móricz
    • 1
  1. 1.Bolyai InstituteUniversity of SzegedSzegedHungary

Personalised recommendations