Acta Mathematica Hungarica

, Volume 65, Issue 4, pp 379–388 | Cite as

Generalized arithmetical progressions and sumsets

  • I. Z. Ruzsa


Arithmetical Progression Generalize Arithmetical Progression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. N. Bogolyubov, Some algebraical properties of almost periods (in Russian),Zap. kafedry mat. fiziki Kiev,4 (1939), 185–194.Google Scholar
  2. [2]
    J. Bourgain, On arithmetic progressions in sums of sets of integers, in:A tribute to Paul Erdős, eds. A. Baker, B. Bollobás, A. Hajnal, Cambridge Univ. Press (Cambridge, England, 1990), pp. 105–109.Google Scholar
  3. [3]
    G. A. Freiman,Foundations of a Structural Theory of Set Addition (in Russian), Kazan Gos. Ped. Inst. (Kazan, 1966).Google Scholar
  4. [4]
    G. A. Freiman,Foundations of a Structural Theory of Set Addition, Translation of Mathematical Monographs vol. 37, Amer. Math. Soc. (Providence, R. I., USA, 1973).Google Scholar
  5. [5]
    G. A. Freiman, What is the structure ofK ifK+K is small?, in:Lecture Notes in Mathematics 1240 Springer-Verlag, (New York-Berlin, 1987), pp. 109–134.Google Scholar
  6. [6]
    G. A. Freiman, H. Halberstam and I. Z. Ruzsa, Integer sum sets containing long arithmetic progressions,J. London Math. Soc.,46 (1992), 193–201.Google Scholar
  7. [7]
    I. Z. Ruzsa, Arithmetic progressions in sumsets,Acta Arithmetica,60 (1991), 191–202.Google Scholar
  8. [8]
    I. Z. Ruzsa, Arithmetical progressions and the number of sums,Periodica Math. Hung.,25 (1992), 105–111.Google Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • I. Z. Ruzsa
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations