Journal of Biomolecular NMR

, Volume 1, Issue 3, pp 247–255

Binding of metal ions toE. coli RNase HI observed by1H−15N heteronuclear 2D NMR

  • Yasushi Oda
  • Haruki Nakamura
  • Shigenori Kanaya
  • Morio Ikehara
Research Papers

Summary

The divalent metal ion binding site and binding constant of ribonuclease HI fromEscherichia coli were investigated by observing chemical shift changes using1H−15N heteronuclear NMR. Chemical shift changes were monitored during the titration of the enzyme with salts of the divalent cations. The enzyme was uniformly labeled by15N, which facilitated the monitoring of the chemical shift change of each cross peak between the backbone amide proton and the amide15N. The chemical shifts of several amide groups were affected upon the addition of a divalent metal ion: Mg2+, Ca2+, or Ba2+. These amide groups resided close to the active site, consistent with the previous X-ray crystallographic studies. From the titration analysis, a single divalent ion binding site was observed with a weak binding constant (KD=2–4 mM for the current divalent ions).

Keywords

Ribonuclease H Metal ion binding Heteronuclear 2D NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bax, A., Ikura, M., Kay, L.E., Torchia, D.A. and Tshudin, R. (1990)J. Magn. Reson.,86, 304–318.Google Scholar
  2. Beese, L.S. and Steitz, T.A. (1991)EMBO J.,10, 25–33.Google Scholar
  3. Berkower, I., Leis, J. and Hurwitz, J. (1973)J. Biol. Chem.,248, 5914–5921.Google Scholar
  4. Bodenhausen, G. and Ruben, D.G. (1980)Chem. Phys. Lett.,69, 185–189.Google Scholar
  5. Crouch, R.J. and Dirksen, M.-L. (1982) InNuclease (Eds, Linn, S.M. and Roberts, R.J.) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 211–241.Google Scholar
  6. Derbyshire, V., Freemont, P.S., Sanderson, M.R., Beese, L., Friedman, J.M., Joyce, C.M. and Steitz, T.A. (1988)Science,240, 199–201.Google Scholar
  7. Itaya, M. (1990)Proc. Natl. Acad. Sci. USA,87, 8587–8591.Google Scholar
  8. Kanaya, S. and Crouch, R.J. (1983)J. Biol. Chem.,258, 1276–1281.Google Scholar
  9. Kanaya, S., Kohara, A., Miyagawa, M., Matsuzaki, T., Morikawa, K. and Ikehara, M. (1989)J. Biol. Chem.,264, 11546–11549.Google Scholar
  10. Kanaya, S., Kohara, A., Miura, Y., Sekiguchi, A., Iwai, S., Inoue, H., Ohtuka, E. and Ikehara, M. (1990)J. Biol. Chem.,265, 4615–4621.Google Scholar
  11. Katayanagi, K., Miyagawa, M., Matsushima, M., Ishikawa, M., Kanaya, S., Ikehara, M., Matsuzaki, T. and Morikawa, K. (1990)Nature,347, 306–309.Google Scholar
  12. Mullen, G.P., Serpersu, E.H., Ferrin, L.J., Loeb, L.A. and Mildvan, A.S. (1990)J. Biol. Chem.,265, 14327–14334.Google Scholar
  13. Nagayama, K., Yamazaki, T., Yoshida, M., Kanaya, S. and Nakamura, H. (1990)J. Biochem.,108, 149–152.Google Scholar
  14. Nagayama, K., Yamazaki, T., Yoshida, M., Kanaya, S. and Nakamura, H. (1991) InComputational Aspects of the Study of the Biological Macromolecules by NMR (Ed, Hoch, J.C.) (NATO ASI series A) in press.Google Scholar
  15. Price, P.L. (1972)J. Biol. Chem.,247, 2895–2899.Google Scholar
  16. Serpersu, E.H., Shortle, D. and Mildvan, A.S. (1986)Biochemistry,25, 68–77.Google Scholar
  17. Yamazaki, T., Yoshida, M., Kanaya, S., Nakamura, H. and Nagayama, K. (1991)Biochemistry,30, 6036–6047.Google Scholar
  18. Yang, W., Hendrickson, W.A., Crouch, R.J. and Satow, Y. (1990)Science,249, 1398–1405.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1991

Authors and Affiliations

  • Yasushi Oda
    • 1
  • Haruki Nakamura
    • 1
  • Shigenori Kanaya
    • 1
  • Morio Ikehara
    • 1
  1. 1.Protein Engineering Research InstituteSuita, OsakaJapan

Personalised recommendations