Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Surface charge near the cardiac inward-rectifier channel measured from single-channel conductance

Summary

The conductance of a channel to permeable ions depends on the number of ions near the mouth of the pore. Surface charge controls the local concentration, and impermeable cations can modify this charge. Correlating channel conductance with the concentration of impermeable cations therefore determines the local charge near the open pore. This paper presents data from cell-attached patches on embryonic chick ventricle cells, and it uses the conductance of inward-rectifier channels in the patch (in 100mm K, with various concentrations of Na, Ca, Ba, and Mg) to estimate the local surface potential. The results indicate the presence of ionized residues near the mouth of the channel. Using the Boltzmann equation and the Gouy-Chapman relation, the surface potential due to these residues (in 100K/33Na/0Ca/0Ba/0Mg) is −40 mV, and the charge density is −0.25e/nm2.

This is a preview of subscription content, log in to check access.

References

  1. Apell, H.J., Alpes, H., Läuger, P., Bamberg, E. 1979. Effects of electrical charges on the permeability of the gramicidin chanel.In: Function and Molecular Aspects of Biomembrane Transport. E. Quaghariello, editor. Elsevier, North Holland Biomedical, Amsterdam

  2. Apell, H.J., Bamberg, E., Alpes, H., Läuger, P. 1977. Formation of ion channels by a negatively charged analog of gramicidin A.J. Membrane Biol. 31:171–188

  3. Apell, H.J., Bamberg, E., Läuger, P. 1979. Effects of surface charge on the conductance of the gramicidin channel.Biochim. Biophys. Acta 552:369–378

  4. Bechem, M., Glitsch, H.G., Pott, L. 1983. Properties of an inward rectifying K channel in the membrane of guinea-pig atrial cardio balls.Pfluegers Arch. 399:186–193

  5. Beeler, G.W., Reuter, H. 1977. Reconstruction of the action potential of ventricular myocardial fibers.J. Physiol. (London) 268:177–210

  6. Begenisich, T. 1975. Magnitude and location of surface charges inMyxicola giant axons.J. Gen. Physiol. 66:47–65

  7. Begenisich, T., Lynch, C. 1974. Effects of internal divalent cations on voltage-clamped squid axons.J. Gen. Physiol. 63:675–689

  8. Bell, J., Miller, C. 1984. Effects of phospholipid surface charge on ion conduction in the K channel of sarcoplasmic reticulum.Biophys. J. 45:279–287

  9. Bresmer, T. 1973. Effects of ionic concentration in permeability properties of nodal membrane in myelinated nerve fibers ofXenopus laevis.Acta Physiol. Scand. 817:474–484

  10. D'Arrigo, J.S. 1978. Screening of membrane surface charges by divalent cations: An atomic representation.Am. J. Physiol. 235:C109-C117

  11. DeHaan, R.L. 1967. Regulation of spontaneous activity and growth of embryonic chick heart cells in tissue cultures.Dev. Biol. 16:216–249

  12. Fozzard, H.A., Sheu, S.S. 1980. Intracellular potassium and sodium activities of chick ventricular muscle during embryonic development.J. Physiol. (London) 137:218–244

  13. Frankenhaeuser, B., Hodgkin, A.L. 1957. The action of calcium on the electrical properties of squid axons.J. Physiol. (London) 137:245–260

  14. Gilbert, D.L., Ehrenstein, G. 1969. Effect of divalent cations on potassium conductance of squid axons: Determination of surface charge.Biophys. J. 9:447–463

  15. Gilbert, D.L., Ehrenstein, G. 1983. Membrane surface charge.Curr. Topics Membr. Transp. 22:407–421

  16. Grahame, D.C. 1947. The electric double layer and the theory of electrocapillarity.Chem. Res. 41:441–501

  17. Hamill, O., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. 391:85–100

  18. Hille, B., Woodhull, A.M., Shapiro, B.I. 1975. Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions, and pH.Philos. Trans. R. Soc. London B 270:301–318

  19. Hume, J.R., Uehara, A. 1985. Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes.J. Physiol. (London) 366:525–544

  20. Kameyama, M., Kiyosue, T., Soejima, M. 1983. Single current analysis of the inward rectifier K current in the rabbit ventricular cells.Jpn. J. Physiol. 33:1039–1056

  21. Kurachi, Y. 1985. Voltage dependent activation of the inward rectifier potassium channel in the ventricular cell membrane of guinea-pig heart.J. Physiol. (London) 366:365–385

  22. Matsuda, H., Saigusa, A., Irisawa, H. 1987. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg.Nature (London) 325:156–159

  23. McDonald, T.F., DeHann, R.L. 1973. Ion levels and membrane potential in chick heart tissue and cultured cells. J. Gen. Physiol.61:89–109

  24. McDonald, T.F., Trautwein, W. 1978a. Membrane currents in cat myocardium: Separation of inward and outward components.J. Physiol. (London) 247:193–216

  25. McDonald, T.F., Trautwein, W. 1978b. The potassium current underlying delayed rectification in cat ventricular muscle.J. Physiol. (London) 274:217–246

  26. McLaughlin, S.G., Szabo, G., Eisenman, G. 1971. Divalent ions and the surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667–687

  27. Mozhagana, G.N., Naumov, A.P. 1970. Effect of surface charge on the steady stage potassium conductance of nodal membrane.Nature (London) 228:164–165

  28. Sakmann, B., Neher, E. 1983. General parameters of pipettes and membrane patches.In: Single-Channel Recording. B. Sakmann and E. Neher, editors. Plenum, New York

  29. Sakmann, B., Trube, G. 1984a. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart.J. Physiol. (London) 347:641–657

  30. Sakmann, B., Trube, G. 1984b. Voltage-dependent inactivation of inwardly-rectifying single-channel currents in the guineapig heart cell membrane.J. Physiol. (London) 347:659–683

  31. Schauf, C.L. 1975. The interactions of calcium withMyxicola giant axons and a description in terms of a simple surface charge model.J. Physiol. (London) 248:613–624

  32. Schmid, R.W., Reilley, C.N. 1957. New complexon for titration of calcium in the presence of magnesium.Anal. Chem. 29:264–268

  33. Trube, G., Hescheler, J. 1984. Inward rectifying channels in isolated patches of the heart cell membrane: ATP-dependence and comparison with cell-attached patches.Pfluegers Arch. 401:178–184

  34. Vogel, W. 1974. Calcium and lanthanum effects at nodal membrane.Pfluegers Arch. 350:25–39

  35. Wanke, E., Carbone, E., Tosta, P.L. 1979. K conductances modified by a titratable group accessible to protons from the intracellular side of the squid giant axon.Biophys. J. 26:319–324

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kell, M.J., DeFelice, L.J. Surface charge near the cardiac inward-rectifier channel measured from single-channel conductance. J. Membrain Biol. 102, 1–10 (1988). https://doi.org/10.1007/BF01875348

Download citation

Key Words

  • potassium channels
  • inward-rectifier
  • heart cells
  • surface charge