Pharmacy World and Science

, Volume 17, Issue 2, pp 31–41 | Cite as

Corticosteroid receptor antagonists: A current perspective

  • Win Sutanto
  • E. Ronald de Kloet


This review aims to highlight a selection of antagonists for the mineralocorticoid and glucocorticoid receptors. Concepts of these receptor systems are described, as is the mechanism of action of these steroids in the brain and periphery. Examples of commonly available and newly synthesized antimineralocorticoids and antiglucocorticoids are given, together with their pharmacological profiles and, when appropriate, clinical and therapeutic applications.


Adrenal cortex hormones Drug development Glucocorticoids Mifepristone Mineralocorticoids Pharmacology Receptors, steroid Steroid receptor antagonists 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Kloet ER. Brain corticosteroid receptor balance and homeostatic control. Front Neuroendocrinol 1991;12:95–164.Google Scholar
  2. 2.
    Funder JW. Target tissue specificity of mineralocorticoids. Trends Endocrinol Metab 1990;3:1458.Google Scholar
  3. 3.
    Whorwood CB, Sheppard MC, Stewart PM. Licorice inhibits 11β-hydroxysteroid dehydrogenase messenger ribonucleic acid levels and potentiates glucocorticoid hormone action. Endocrinology 1993;132:2287–92.Google Scholar
  4. 4.
    Sutanto W, de Kloet ER. Novel analogues of mineralocorticoids, antimineralocorticoids and related compounds. Curr Opin Ther Pat 1991;Dec:1775–91.Google Scholar
  5. 5.
    Sutanto W, de Kloet ER. Mineralocorticoid receptor ligands: Biochemical, pharmacological, and clinical aspects. Med Res Rev 1991;11:1–23.Google Scholar
  6. 6.
    Guiochon-Mantel A, Milgrom E. Cytoplasmic-nuclear trafficking of steroid hormone receptors. Trends Endocrinol Metab 1993;4:322–8.Google Scholar
  7. 7.
    Rupprecht R, Arriza JL, Spengler D, Reul JMHM, Evans RM, Holsboer F, Damm K. Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. Mol Endocrinol 1993;7:597–603.Google Scholar
  8. 8.
    Wright APH, Zilliacus J, McEwan IJ, Dahlman-Wright K, Almlöf T, Carlstedt-Duke J, et al.. Structure and function of the glucocorticoid receptor. J Ster Biochem Mol Biol 1993;47:11–9.Google Scholar
  9. 9.
    O'Malley BW, McGuire WL, Kohler PO, Korenman SG. Studies on the mechanism of steroid hormone regulation of synthesis of specific proteins. Rec Prog Horm Res 1969; 25:105–60.Google Scholar
  10. 10.
    Lebeau M-C, Baulieu EE. Steroid antagonists and receptorassociated proteins. Hum Reprod 1994;9:437–44.Google Scholar
  11. 11.
    Smith DF, Toft DO. Steroid receptor and their associated proteins. Mol Endocrinol 1993;3:326–33.Google Scholar
  12. 12.
    Cadepond F, Jibard N, Binart N, Schweizer-Groyer G, Segard-Maurel I, Baulieu EE. Selective deletions in the kDa heat shock protein (hsp 90) impede hetero-oligomeric complex formation with the glucocorticosteroid receptor (GR) or hormone binding by GR. J Ster Biochem Mol Biol 1994;48:361–7.Google Scholar
  13. 13.
    Groyer A, Le Bouc Y, Joab I, Radanyi C, Renoir JM, Robel P. Chick oviduct glucocorticosteroid receptor. Specific binding of RU 486 and immunological studies with antibodies to chick oviduct progesterone receptor. Eur J Biochem 1985; 149:445–51.Google Scholar
  14. 14.
    Renoir JM, Radanyi C, Baulieu EE. The antiprogesterone RU 486 stabilizes the heterooligomeric, non DNA-binding, 8S form of the rabbit uterus cytosol progesterone receptor. Steroids 1989;53:1–20.Google Scholar
  15. 15.
    Schreiber SL. Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 1991;251:283–7.Google Scholar
  16. 16.
    Duax WL, Griffin JF. Structural characteristics of antagonists for gluco- and mineralocorticoids. In: Agarwal MK, editor. Adrenal steroid antagonism. Berlin: Walter de Gruyter, 1984:15–41.Google Scholar
  17. 17.
    Raynaud JP, Ojasoo T, Bouton MM, Philibert D. Receptor binding as a tool in the development of new bioactive steroids. In: Ariens EJ, editor. Drug designs. New York: Academic Press, 1978:169–214.Google Scholar
  18. 18.
    Wambach G, Casals-Stenzel J. Structure-activity relationship of new steroidal aldosterone antagonists. Comparison of the affinity for mineralocorticoid receptorsin vitro and the antialdosterone activityin vivo. Biochem Pharmacol 1983; 32:1479–85.Google Scholar
  19. 19.
    Rafestin-Oblin ME, Lombes M, Coutte B, Baulieu EE. Differences between aldosterone and its antagonists in binding kinetics and ligand-induced hsp 90 release from mineralocorticoid receptor. J Ster Biochem Mol Biol 1992;41:815–21.Google Scholar
  20. 20.
    Coutte B, Lombes M, Baulieu EE, Rafestin-Oblin ME. Aldosterone antagonists destabilize the mineralocorticoid receptor. Biochem J 1992;282:697–702.Google Scholar
  21. 21.
    Agarwal MK, Kalimi M. Activation of mineralocorticoid agonist and antagonist specific receptors from rat kidney. Biochem Biophys Res Commun 1987;143:398–402.Google Scholar
  22. 22.
    Cutler GB Jr, Barnes KM, Sauer MA, Loriaux DL. 11-Deoxycortisol: a glucocorticoid antagonistin vivo. Endocrinology 1979;104:1839–46.Google Scholar
  23. 23.
    Rousseau GG, Kirchoff J, Formstecher P, Lustenberger P. 17β-Carboxamide steroids are a new class of glucocorticoid antagonists. Nature 1979;279:158–9.Google Scholar
  24. 24.
    Chrousos GP, Barnes KM, Sauer MA, Loriaux DL, Cutler GB Jr. Δ1,9(11)-11-Deoxycortisol: an improved glucocorticoid antagonist. Endocrinology 1980;107:472–8.Google Scholar
  25. 25.
    Chrousos GP, Cutler GB Jr, Simons SS Jr, Pons M, John LS, Moriarty RM, et al. Development of antiglucocorticoids with potential clinical usefulness. In: Lee HJ, Fitzgerald TJ, editors. Progress in research and clinical applications of corticosteroids. Proceedings of the 6th Annual Clinical Symposium, Philadelphia: Heyden, 1982;152.Google Scholar
  26. 26.
    Chrousos GP, Sauer MA, Loriaux DL, Cutler GM Jr. Δ-11-Oxa-11-deoxycortisol: a new antiglucocorticoid with activityin vivo. Steroids 1982;40:425–9.Google Scholar
  27. 27.
    Rousseau GG, Cambron P, Brasseur N, Marcotte L, Matton P, Schmit J-P. Glucocorticoid agonist and antagonist activity of 17,21-acetonide steroids. J Ster Biochem 1983; 18:237–43.Google Scholar
  28. 28.
    Philibert D, Costerousse G, Gaillard-Moguilewsky M, Nedelec L, Nique F, Tournemine C, et al.. From RU 38486 towards dissociated antiglucocorticoid and antiprogesterone. Front Horm Res 1991, 19:1–17.Google Scholar
  29. 29.
    Teutsch G, Bélanger A. Regio and stereospecific synthesis of 11β-substituted 19-norsteroids. Tetrahedron Lett 1979;22: 2051–4.Google Scholar
  30. 30.
    Baulieu EE. RU 486 — a decade on today, and tomorrow. In: Donaldson MS, Dorflinger L, Brown SS, Benet LZ, editors. Clinical applications of mifepristone, RU 486 and other antiprogestins. Washington: National Academy Press, 1993:71–119.Google Scholar
  31. 31.
    Benhamou B, Garcia T, Lerouge T, Vergezac A, Gofflo D, Bigogne C, et al.. A single amino acid that determines the sensitivity of progesterone receptors to RU 486. Science 1992;32:45–51.Google Scholar
  32. 32.
    Garcia T, Benhamou B, Gofflo D, Vergezac A, Philibert D, Chambon P, et al.. Switching agonistic, antagonistic, and mixed transcriptional responses to 11β-substituted progestins by mutation of the progesterone receptor. Mol Endocrinol 1992;6:2071–8.Google Scholar
  33. 33.
    Vegeto E, Allan GF, Schrader WT, Tsai M-J, McDonnell DP, O'Malley BW. The mechanism of RU 486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell 1992;69:703–13.Google Scholar
  34. 34.
    Montrella-Waybill M, Clore JN, Schoolwerth AC, Watlington CO. Evidence that high dose cortisol-induced Na+ retention in man is not mediated by the mineralocorticoid receptor. J Clin Endocrinol Metab 1991;72:1060–6.Google Scholar
  35. 35.
    Clore J, Schoolwerth A, Watlington CO. When is cortisol a mineralocorticoid? [editorial]. Kidney Int 1992;42:1297–308.Google Scholar
  36. 36.
    Ulick S, Vetter KK. Simultaneous measurement of the secretory rates of aldosterone and 18-hydroxycorticosterone. J Clin Endocrinol Metab 1965;25:1915–26.Google Scholar
  37. 37.
    Dale SL, Holbrook MM, Melby JC. 19-Nordeoxycorticosterone excretion in rats bred for susceptibility and resistance to the hypertensive effects of salt. Endocrinology 1985;117:2424–7.Google Scholar
  38. 38.
    Gomez-Sanchez EP, Gomez-Sanchez CE. 19-Nordeoxycorticosterone, aldosterone and corticosterone excretion in sequential urine samples from male and female rats. Steroids 1991;56:451–4.Google Scholar
  39. 39.
    Kamata S, Matsui T, Haga N, Nakamura M, Odaguchi K, Itoh T. Aldosterone antagonists. 2. Synthesis and biological activities of 11,12-dihydropregnane derivatives. J Med Chem 1987;30:1647–58.Google Scholar
  40. 40.
    Sekihara H. 19-hydroxyandrostenedione: a potent hypertensinogenic steroid in man. J Ster Biochem 1983;19:353–8.Google Scholar
  41. 41.
    Sekihara H, Torii R, Osawa Y, Takaku F. Angiotensin II induces the release of 19-hydroxyandrostenedione in man. J Clin Endocrinol Metab 1985;61:291–6.Google Scholar
  42. 42.
    Latif SA, Conca TJ, Morrris DJ. The effects of the licorice derivative, glycyrrhetinic acid, on hepatic 3α- and 3β-hydroxysteroid dehydrogenases and 5α- and 5β-reductase pathways of metabolism of aldosterone in male rats. Steroids 1990;55:52–8.Google Scholar
  43. 43.
    Hierholzer K, Siebe H, Fromm M. Inhibition of 11β-hydroxysteroid dehydrogenase and its effect on epithelial sodium transport. Kidney Int 1990;38:673–8.Google Scholar
  44. 44.
    Hayashi Y, Hirai S, Negishi M, Okumura T, Ichikawa A. Desensitization by glycyrrhetinic acid of other stimulatory substance-induced increases in intracellular calcium in a variety of cell types. Biochem Pharmacol 1991;41:1725–30.Google Scholar
  45. 45.
    Gomez-Sanchez EP, Gomez-Sanchez CE. Central hypertensinogenic effects of glycyrrhizic acid and carbenoxolone. Am J Physiol 1992:263:E1125–30.Google Scholar
  46. 46.
    Rylance PB, Brincat M, Lafferty K, de Traffords JC, Brincat S, Parsons V, et al.. Natural progesterone and antihypertensive action. BMJ 1985;290:13–4.Google Scholar
  47. 47.
    Funder JW, Pearce PT, Smith RE, Smith AI. Adrenal steroid and circulatory control: receptor and effector studies. In: Mantero F, Takeda R, Scoggins BA, Biglieri EG, Funder JW, editors. The adrenal and hypertension: from cloning to clinic. Serono Symposia Publication. New York: Raven Press, 1989:99–108.Google Scholar
  48. 48.
    Kagawa CM. Blocking the renal electrolyte effects of mineralocorticoids with an orally active steroidal spirolactone. Endocrinology 1960;67:125–31.Google Scholar
  49. 49.
    van Buren M, Boer P, Koomans HA. Effects of acute mineralocorticoid and glucocorticoid receptor blockade on the excretion of an acute potassium load in healthy humans. J Clin Endocrinol Metab 1993;77:902–9.Google Scholar
  50. 50.
    Tepel M, Husseini S, Zidek W. Effect of spironolactone on cytosolic free sodium concentration in platelets from hypertensive patients with primary aldosteronism. Eur J Clin Pharmacol 1993;44:S51–2.Google Scholar
  51. 51.
    Wambach G, Casals-Stenzel J. Structure-activity relationship of spironolactone derivatives. In: Agarwal MK, editor. Adrenal steroid antagonism. Berlin: Walter de Gruyter, 1984.Google Scholar
  52. 52.
    Claire M, Rafestin-Oblin ME, Milhaud A, Roth-Meyer C, Corvol P. Mechanism of action of a new antialdosterone compound prorenone. Endocrinology 1979;104:1194–200.Google Scholar
  53. 53.
    Marver D. The mineralocorticoid receptor. Biochemical action of hormones. Orlando: Academic Press, 1985:385–431.Google Scholar
  54. 54.
    Hofmann LM, Chinn LJ, Pedrera HA, Krupnick MI, Suley-Manov OD. Potassium prorenoate: a new steroidal aldosterone antagonist. J Pharmacol Exp Ther 1975;194:450–6.Google Scholar
  55. 55.
    Ramsay L, Harrison I, Shelton J, Tidd M. Relative potency of prorenoate and spironolactone in normal man. Clin Pharmacol Ther 1977;210:6020–9.Google Scholar
  56. 56.
    de Gasparo M, Joss U, Ramjoue HP, Whitebread SE, Haenni H, Schenkel L, et al.. Three new epoxyspirolactone derivatives; characteristicsin vitro andin vivo. J Pharmacol Exp Ther 1987;240:650–6.Google Scholar
  57. 57.
    Sutanto W, de Kloet ER. ZK 91587: a novel synthetic antimineralocorticoid displays high affinity for corticosterone (Type I) receptors in the rat. Life Sci 1988;43:1537–43.Google Scholar
  58. 58.
    Sutanto W, de Kloet ER. ZK 91587 and structurally related antimineralocorticoids. Drugs Future 1989;14:1093–100.Google Scholar
  59. 59.
    Losert W, Bittler D, Buse M, Casals-Stenzel J, Haberey M, Laurent H, et al.. Mespirenone and other 15,16-methylene-1 7-spirolactones, a new type of steroidal aldosterone antagonists. Arzneimittelforschung/Drug Res 1986;36:1583–600.Google Scholar
  60. 60.
    Nickisch K, Bittler D, Laurent H, Losert W, Nishino Y, Schillinger E, et al.. Aldosterone antagonists. 3. Synthesis and activities of steroidal 7α-(alkoxycarbonyl)-15,16-methylene spirol. J Med Chem 1990;33:509–13.Google Scholar
  61. 61.
    Nickisch K, Bittler D, Casals-Stenzel J, Laurent H, Nickolson R, Nishino Y, et al.. Aldosterone antagonists. 1. Synthesis and activities of 6β,7β;15β;16β-dimethylene steroidal spirolactones. J Med Chem 1985;28:546–50.Google Scholar
  62. 62.
    Nickisch K, Beier S, Bittler D, Elger W, Laurent H, Losert W, et al.. Aldosterone antagonists. 4. Synthesis and activities of steroidal 6,6-ethylene-15,16-methylene 17-spirolactones. J Med Chem 1991;34:2464–8.Google Scholar
  63. 63.
    Pollow K, Juchem M, Elger W, Jacobi N, Hoffmann G, Mobus V. Dihydrospirorenone (ZK 30595): a novel synthetic progestagen — characterization of binding to different receptor proteins. Contraception 1992;46:561–74.Google Scholar
  64. 64.
    Komanicky P, Melby JC. Experimental hypertension induced by 19-norprogesterone in rat. Endocrinology 1981;109:1164–8.Google Scholar
  65. 65.
    Wambach C, Higgins JR. Antimineralocorticoid action of progesterone. In: Agarwal MK, editor. Antihormones. Amsterdam: Elsevier/North-Holland, 1979:167–81.Google Scholar
  66. 66.
    Korte SM, Bouws GA, Bohus B. Central actions of corticotropin-releasing hormone (CRH) on behavioral, neuroendocrine, and cardiovascular regulation: brain corticoid receptor involvement. Horm Behav 1993;27:167–83.Google Scholar
  67. 67.
    Agarwal MK. Purification and properties of the mineralocorticoid receptor with the aid of synthetic antisteroids. Front Horm Res 1991;19:55–64.Google Scholar
  68. 68.
    Schmidt TJ, Husted RF, Stokes JB. Steroid hormone stimulation of Na+ transport in A6 cells is mediated via glucocorticoid receptors. Am J Physiol 1993;264:C875–84.Google Scholar
  69. 69.
    Garty H, Peterson-Yantorno K, Asher C, Civia MM. Effects of corticoid agonists and antagonists on apical Na+ permeability of toad urinary bladder. Am J Physiol 1994;266:F108–16.Google Scholar
  70. 70.
    Sekihara H, Yazaki Y. 5α-Dihydro-11-deoxycorticosterone as a mineralocorticoid agonist and antagonist: evidence for a weak mineralocorticoid as an antagonist of potent mineralocorticoids. J Ster Biochem Mol Biol 1993;45:235–8.Google Scholar
  71. 71.
    Cella JA, Kagawa CM. Spironolactone. J Am Chem Soc 1957;79:4808–11.Google Scholar
  72. 72.
    Bittler D, Hofmeister H, Laurent H, Nickisch K, Nickolson R, Petzolot K, et al.. Synthesis of spirorenone: a novel highly active aldosterone antagonist. Angew Chem Int Ed Engl 1982;211:696–7.Google Scholar
  73. 73.
    Agarwal MK, Kalimi M. Different mechanisms for the receptor mediated antimineralocorticoid action of two new spirolactone derivatives. Biochem Biophys Res Commun 1988; 150:449–55.Google Scholar
  74. 74.
    Nickisch K, Bittler D, Laurent H, Losert W, Casals-Stenzel J, Nishino N, et al.. Aldosterone antagonists. 2. New 7α-(acetylthio)-15,16-methylene spironolactones. Med Chem 1987;30:1403–9.Google Scholar
  75. 75.
    Lazar G, Agarwal MK. Evidence for an antagonist specific receptor that does not bind mineralocorticoid agonists. Biochem Biophys Res Commun 1986;134:261–5.Google Scholar
  76. 76.
    Agarwal MK, Kalimi M. Activation of mineralocorticoid agonist and antagonist specific receptors from rat kidney. Biochem Biophys Res Commun 1987;143:398–402.Google Scholar
  77. 77.
    Coirini H, Magarinos AM, de Nicola AF, Rainbow TC, McEwen BS. Further studies of brain aldosterone binding sites employing new mineralocorticoid and glucocorticoid receptor markersin vivo. Brain Res 1985;361:212–6.Google Scholar
  78. 78.
    Torelli V, Hardy M, Nedelec L, Tournemine C, Deraedt C, Philibert D. 7α-Alkyl steroidal spirolactones as potent aldosterone antagonists [abstract]. J Ster Biochem 1982;17:Abstr 198.Google Scholar
  79. 79.
    Kalimi M, Opoku J, Agarwal MK, Corley K. Effects of antimineralocorticoid RU 26752 on steroid-induced hypertension in rats. Am J Physiol 1990;258:E737–9.Google Scholar
  80. 80.
    Philibert D, Moguilewsky M. RU 28362, a useful tool for the characterization of glucocorticoid and mineralocorticoid receptors [abstract]. Proceedings of the 65th Annual Meeting of the Endocrinology Society 1983;335:Abstr 1018.Google Scholar
  81. 81.
    Lang I, Zielinski CC, Templ H, Spona J, Geyer G. Medroxyprogesterone acetate lowers plasma corticotropin and cortisol but does not suppress anterior pituitary responsiveness to human corticotropin releasing factor. Cancer 1990;66:1949–53.Google Scholar
  82. 82.
    Guthrie GP Jr, John WJ. Thein vivo glucocorticoid and antiglucocorticoid actions of medroxyprogesterone acetate. Endocrinology 1980;107:1393–9.Google Scholar
  83. 83.
    Schane HP, Harding HR, Creange JE, Botton I, Castracane VD, Snyder BW. Nivazol: a glucocorticoid in rats with only hypothalamic-pituitary-adrenal-inhibiting activity in primates. Endocrinology 1984;114:1983–9.Google Scholar
  84. 84.
    Schlechte JA, Simons SS Jr, Lewis DA, Thompson EB. [3H]-Cortivasol: a unique high affinity ligand for the glucocorticoid receptor. Endocrinology 1985;117:1355–62.Google Scholar
  85. 85.
    Burolaud T, Danze PM, Tbarka N, Formstecher P, Dautrevaux M. Binding of RU 486 and deacylcortivazol to the glucocorticoid receptor is insensitive to sulfhydryl-modifying agents. J Ster Biochem Mol Biol 1993;44:217–25.Google Scholar
  86. 86.
    Lamontagne N, Mercier L, Pons M, Thompson EB, Simon SS Jr.. Glucocorticoid versus antiglucocorticoid activity: can a single functional group modification of glucocorticoid steroids always convey antiglucocorticoid activity? Endocrinology 1984;114:2252–63.Google Scholar
  87. 87.
    Gagne D, Pons M, De Paulet AC. Analysis of the relation between receptor binding affinity and antagonist efficacy of antiglucocorticoids. J Ster Biochem 1986;25:315–22.Google Scholar
  88. 88.
    Richard-Foy H, Sistare FD, Riegel AT, Simons SS Jr, Hager GL. Mechanism of dexamethasone 21-mesylate antiglucocorticoid action: II. Receptor-antiglucocorticoid complexes do not interact productively with mouse mammary tumor virus long terminal repeat chromatin. Mol Endocrinol 1987;1:659–65.Google Scholar
  89. 89.
    Sistare FD, Hager GL, Simons Jr SS. Mechanism of dexamethasone 21-mesylate antiglucocorticoid action: I. Receptor-antiglucocorticoid complexes do not competitively inhibit receptor-glucocorticoid complex activation of gene transcriptionin vivo. Mol Endocrinol 1987;1:648–58.Google Scholar
  90. 90.
    Simons SS Jr, Oshima H, Szapary D. Modulation of the agonist activity of antisteroids by a novel cis-acting element. J Ster Biochem Mol Biol 1992;43:43–55.Google Scholar
  91. 91.
    Couette B, Marsaud V, Baulieu EE, Richard-Foy H, Rafestin-Oblin ME. Spironolactone, an aldosterone antagonist, acts as an antiglucocorticoid on the mouse mammary tumor virus promoter. Endocrinology 1992;130:430–6.Google Scholar
  92. 92.
    Bigsby RM. Progesterone and dexamethasone inhibition of estrogen-induced synthesis of DNA and complement in rat uterine epithelium: effects of antiprogesterone compounds. J Ster Biochem Mol Biol 1993;45:295–301.Google Scholar
  93. 93.
    Lopez S, Simons SS Jr. Dexamethasone 21-(β-isothiocyanatoethyl) thioester: a new affinity label for glucocorticoid receptors. J Med Chem 1991;34:1762–7.Google Scholar
  94. 94.
    Chrousos GP, Laue L, Nieman LK, Kawai S, Udelsman RU, Brandon DD, et al.. Glucocorticoids and glucocorticoid antagonists: lessons from RU 486. Kidney Int 1988;34 Suppl 26:S18–23.Google Scholar
  95. 95.
    Fuchs BA, Pruett SB. Morphine induces apoptosis in murine thymocytesin vivo but notin vitro: involvement of both opiate and glucocorticoid receptors. J Pharmacol Exp Ther 1993;266:417–23.Google Scholar
  96. 96.
    Papolos DF, Edwards E, Marmur R, Lachman HM, Henn FA. Effects of the antiglucocorticoid RU 38486 on the induction of learned helplessness behavior in Sprague-Dawley rats. Brain Res 1993;615:304–9.Google Scholar
  97. 97.
    Oitzl MS, de Kloet ER. Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behav Neurosci 1992;106:62–71.Google Scholar
  98. 98.
    Yi SJ, Masters JN, Baram TZ. Effects of a specific glucocorticoid receptor antagonist on corticotropin releasing hormone gene expression in the paraventricular nucleus of the neonatal rat. Dev Brain Res 1993;73:253–9.Google Scholar
  99. 99.
    Laue L, Kawai S, Brandon D, Brightwell D, Barnes K, Knazek RA, et al.. Receptor-mediated effects of glucocorticoids on inflammation: enhancement of the inflammatory response with a glucocorticoid antagonist. J Ster Biochem 1988;29:591–9.Google Scholar
  100. 100.
    Lazar G Jr, Duda E, Lazar G. Effect of RU 38486 on TNF production and toxicity. FEBS Lett 1992;308:137–40.Google Scholar
  101. 101.
    Morrow LE, McClellan JL, Conn CA, Kluger MJ. Glucocorticoids alter fever and II-6 responses to psychological stress and to lipopolysaccharide. Am J Physiol 1993;264:R1010–6.Google Scholar
  102. 102.
    Ratka A, Sutanto W, de Kloet ER. Long-term glucocorticoid suppression of opioid-induced antinociception. Neuroendocrinology 1988;48:439–44.Google Scholar
  103. 103.
    Capasso A, Di Giannuario A, Loizzo A, Pieretti S, Sorrentino L. Central interaction of dexamethasone and RU 38486 on morphine antinociception in mice. Life Sci 1992;51:139–43.Google Scholar
  104. 104.
    Etgen AM, Vathy I. Agonist and antagonist effects of RU 38486 on progesterone-regulated sexual behavior and neurochemical responses. Front Horm Res 1991;19:45–54.Google Scholar
  105. 105.
    Pleim ET, Lipetz J, Steele TL, Barfield RJ. Facilitation of sexual receptivity by ventromedial hypothalamic implants of the antiprogestin RU 486. Horm Behav 1993;27:488–98.Google Scholar
  106. 106.
    Nordeen SK, Bona BJ, Moyer ML. Latent agonist activity of the steroid antagonist, RU 486, is unmasked in cells treated with activators of protein kinase A. Mol Endocrinol 1993;7:731–42.Google Scholar
  107. 107.
    Beck CA, Estes PA, Bona BJ, Muro-Cacho CA, Nordeen SK, Edwards DP. The steroid antagonist RU 486 exerts different effects on the glucocorticoid and progesterone receptors. Endocrinology 1993;133:728–40.Google Scholar
  108. 109.
    Weber KT. Glucocorticoids and mineralocorticoids: antifibrotic and profibrotic of wound healing. J Lab Clin Med 1992;120:22–9.Google Scholar
  109. 110.
    Baxter JD. The effect of glucocorticoid therapy. Hosp Pract 1992;27:111–23.Google Scholar
  110. 111.
    Karim A. Spironolactone metabolism in man revisited. In: Brunner HR, Berglund G, Brutsaert DL, Cardiner P, Ledingham JGG, editors. Contemporary trends in diuretic therapy. Amsterdam: Excerpta Medica, 1986:22–37.Google Scholar
  111. 112.
    Ramsay LE. Clinical pharmacology and therapeutic use of aldosterone antagonists. In: Agarwal MK, editor. Hormone antagonists. Berlin: Walter de Gruyter, 1982.Google Scholar
  112. 113.
    Bernardi M, Servadei D, Trevisani F, Rusticali AG, Gasbarrini G. Importance of plasma aldosterone concentration in patients with liver cirrhosis and ascites. Digestion 1985;31:189–93.Google Scholar
  113. 114.
    Emili M, Cuppone R, Ricci GL. Comparative clinical study of spironolactone and potassium canrenoate: a randomized evaluation with double cross-over test. Arzneimittelforschung/Drug Res 1988;38(II):1492–5.Google Scholar
  114. 115.
    Ochs HR, Greenblatt DJ, Bodem G, Smith TW. Spironolactone. Am Heart J 1978;96:389–400.Google Scholar
  115. 116.
    Crane MG, Harris JJ. Effects of spironolactone in hypertensive patients. Am J Med Sci 1970;260:311–30.Google Scholar
  116. 117.
    Jeunemaitre X, Kreft-Jais C, Chatellier G, Julien J, Degoulet P, Plouin P-F, et al.. Long-term effect of spironolactone in essential hypertension. Kidney Int 1988;34 Suppl 26:S14–9.Google Scholar
  117. 118.
    Ulick S, Chan SK, Nageswara Rao K, Edassery J, Mantero F. A new form of the syndrome of apparent mineralocorticoid excess. J Ster Biochem 1989;32:209–12.Google Scholar
  118. 119.
    Burke BM, Cunliffe WJ. Oral spironolactone therapy for female patients with acne, hirsutism or androgenic alopecia. Br J Dermatol 1985;112:124–5.Google Scholar
  119. 120.
    Laue L, Kenisberg D, Pescovitz OH, Hench KD, Barnes KM, Loriaux DL, et al.. Treatment of familial male precocious puberty with spironolactone and testolactone. N Engl J Med 1989;320:496–502.Google Scholar
  120. 121.
    Loriaux DL, Menard R, Taylor A, Pita JC, Santen R. Spironolactone and endocrine dysfunction. Ann Intern Med 1976:85:630–6.Google Scholar
  121. 122.
    Greenblatt DJ, Koch-Weser J. Adverse reactions to spironolactone: a report from the Boston Collaborative Drug Surveillance Program. JAMA 1973;225:40–3.Google Scholar
  122. 123.
    de Gasparo M, Whitebread SE, Preiswerk G, Jeunemaitre X, Corvol P, Menard J. Antialdosterones: incidence and prevention of sexual side-effects. J Ster Biochem 1989;32:223–7.Google Scholar
  123. 124.
    Nakajima ST, Brumsted JR, Riddick DH, Gibson M. Absence of progestational activity of oral spironolactone. Fertil Steril 1989;52:155–8.Google Scholar
  124. 125.
    Sadee W, Dagcioglu M, Schroder R. Pharmacokinetics of spironolactone, canrenone and canrenoate-K in human. J Pharmacol Exp Ther 1973;185:686–95.Google Scholar
  125. 126.
    Cook CS, Hauswald CL, Schoenhard GL, Piper CE, Patel A, Radzialowski FM, et al.. Difference in metabolic profile of potassium canrenoate and spironolactone in the rat: mutagenic metabolites unique to potassium canrenoate. Arch Toxicol 1988;201:212–4.Google Scholar
  126. 127.
    Ulmann A, Bertagna C, Le Go A, Husson JM, Tache A, Sassano P, et al.. Assessment of the antimineralocorticoid effect of RU 28318 in healthy men with induced exogenous and endogenous hypermineralocorticism. Eur J Clin Pharmacol 1985;28:531–5.Google Scholar
  127. 128.
    Millar JA, Cumming AMM, Fraser R, Mason PA, Leckie BJ, Morton JJ, et al. Plasma active and inactive renin, angiotensin II and aldosterone concentrations in normal subjects during administration of spironolactone. Proceedings of the Searle Symposium. Amsterdam: Excerpta Medica, 1978:412–9.Google Scholar
  128. 129.
    Wambach G. The mineralocorticoid receptor and the activity of aldosterone antagonists. In: Agarwal MK, editor. Receptor-mediated antisteroid action. Berlin: Walter de Gruyter, 1987:169–96.Google Scholar
  129. 130.
    Nieman LK, Chrousos GP, Kellner C, Spitz IM, Nisula B, Cutler GB Jr, et al.. Successful treatment of Cushing's syndrome with the glucocorticoid antagonist RU 486. J Clin Endocrinol Metab 1985;61:536–40.Google Scholar
  130. 131.
    Bertagna X, Bertagna C, Luton JP, Husson JM, Girard F. The new steroid analog RU 486 inhibits glucocorticoid action in man. J Clin Endocrinol Metab 1984;59:25–8.Google Scholar
  131. 132.
    Bertagna X, Bertagna C, Laudat M-H, Husson J-M, Girard F, Luton JP. Pituitary-adrenal response to the antiglucocorticoid action of RU 486 in Cushing's syndrome. J Clin Endocrinol Metab 1986;63:639–43.Google Scholar
  132. 133.
    Kalimi M, Opoku J, Corley K. Role of glucocorticoid antagonist RU 486 and mineralocorticoid antagonist RU 26752 in experimental hypertension in rats. Front Horm Res 1991;19:55–64.Google Scholar
  133. 134.
    Phillips CI, Green K, Gore S, Cullen PM, Campbell M. Eye drops of RU 486, a peripheral steroid blocker, lower intraocular pressure in rabbit. Lancet 1984;1:767–8.Google Scholar
  134. 135.
    Grünfeld JP, Eloy L, Moura AM, Ganeval D, Ramos-Frendo B, Worcel M. Effects of antiglucocorticoids on glucocorticoid hypertension in the rat. Hypertension 1985;7:591–9.Google Scholar
  135. 136.
    Bertagna X, Basin C, Picard F, Varet B, Bertagna C, Hucher M, et al.. Peripheral antiglucocorticoid action of RU 486 in man. Clin Endocrinol 1988;28:537–41.Google Scholar
  136. 137.
    Laue L, Lotze MT, Chrousos GP, Barnes K, Loriaux DL, Fleisher TA. Effect of chronic treatment with the glucocorticoid antagonist RU 486 in man: toxicity, immunological, and hormonal aspects. J Clin Endocrinol Metab 1990;71:1474–80.Google Scholar
  137. 138.
    Wiedemann K, Lauer C, Loycke A, Pollmacher T, Durst P, Macher JP, et al.. Antiglucocorticoid treatment disrupts endocrine cycle and nocturnal sleep pattern. Eur Arch Psychiatry Clin Neurosci 1992;241:372–5.Google Scholar
  138. 139.
    Krishnan KR, Reed D, Wilson WH, Saunders WB, Ritchie JC, Nemeroff CB, et al.. RU 486 in depression. Prog Neuropsychopharmacol Biol Psychiatry 1992;16:913–20.Google Scholar
  139. 140.
    Gaillard RC, Riondel A, Muller AF, Herrmann W, Baulieu EE. RU 486: a steroid with antiglucocorticosteroid activity that only disinhibits the human pituitary-adrenal system at a specific time of day. Proc Natl Acad Sci USA 1984;81:3879–82.Google Scholar
  140. 141.
    Kling MA, Demitrack MA, Whitfield HJ Jr, Kalogeras KT, Listwak SJ, DeBellis MD, et al.. Effects of the glucocorticoid receptor antagonist RU 486 on pituitary-adrenal function in patients with anorexia nervosa and healthy volunteers: enhancement of plasma ACTH and cortisol secretion in underweight patients. Neuroendocrinology 1993;57:1082–91.Google Scholar
  141. 142.
    Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptors. Science 1986;232:1004–7.Google Scholar
  142. 143.
    Sutanto W, Handelmann G, de Bree F, de Kloet ER. Multifaceted interaction of corticosteroids with the intracellular receptors and with membrane GABAA receptor complex in the rat brain. J Neuroendocrinol 1989;4:243–7.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1995

Authors and Affiliations

  • Win Sutanto
    • 1
  • E. Ronald de Kloet
    • 2
  1. 1.Divisions of Pharmacology and Medical PharmacologyCentre for Bio-Pharmaceutical Sciences Sylvius LaboratoriesRA Leidenthe Netherlands
  2. 2.Division of Medical PharmacologyCentre for Bio-Pharmaceutical SciencesLeidenthe Netherlands

Personalised recommendations