Biotechnology Techniques

, Volume 3, Issue 6, pp 361–364 | Cite as

Tandem mass spectrometry for on-line fermentation monitoring

  • Mark J. Hayward
  • Anita K. Lister
  • Tapio Kotiaho
  • R. Graham Cooks
  • Glen D. Austin
  • Ramani Narayan
  • George T. Tsao
Article

Summary

Membrane introduction mass spectrometry has been employed for on-line determination of the major products and volatile metabolites ofBacillus polymyxa fermentation. Samples were introduced into the mass spectrometer via a direct insertion membrane probe in which the aqueous solution flowed past a membrane located in the ion source of the mass spectrometer. Concentrations of the products 2,3-butanediol, acetoin, ethanol and acetic acid in fermentation broth were measured by tandem mass spectrometry after permeation through the membrane and ionization by chemical ionization. External standards were employed for quantification and a large linear response range was available for each of the major products observed. Dissolved CO2 and O2, as well as CO2 in the off gases, were also monitored on-line by mass spectrometry. The use of tandem mass spectrometry has allowed the identification of products that were not previously known to be present in measurable amounts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey J.E.; Ollis, D.F., (1986).Biochemical Engineering Fundamentals, McGraw Hill: New York.Google Scholar
  2. Bier, M.E.; Cooks, R.G., (1987).Anal. Chem. 59, 597.Google Scholar
  3. Brodbeit, J.S.; Cooks, R.G., (1985).Anal. Chem., 57(6), 1153.Google Scholar
  4. Busch, K.L.; Glish, G.L.; McLuckey, S.A., (1988).Mass Spectrometry/Mass Spectrometry: Techniques and Applications of Tandem Mass Spectrometry, VCH: New York.Google Scholar
  5. Cheryan, M.; Mehaia, Md.A., (1986).Chemtech, 11, 676.Google Scholar
  6. de Mas, C.; Jansen, N.B.; Tsao, G.T., (1988)Biotech. Bioeng., 31, 366.Google Scholar
  7. Hacking, A.J., (1986).Economic Aspects of Biotechnology, Cambridge: Cambridge U.K.Google Scholar
  8. Harland, B.J.; Nicholson, P.J.D.; Gillings, E., (1987).Wat. Res., 21(1), 107.Google Scholar
  9. Heinzle, E.; Reuss, M., (1987).Mass Spectrometry in Biotechnological Process Analysis and Control, Plenum: New York.Google Scholar
  10. Hoch, G.; Kok, B., (1963)Arch. Biochem. Biophys. 101, 160.Google Scholar
  11. Llewellyn, P.M.; Littlejohn, D.P. (1969). U.S. Patent 3,429,105.Google Scholar
  12. Luckner, M., (1984).Secondary Metabolism in microorganisms, Plants and Animals, Springer-Verlag: Berlin.Google Scholar
  13. Moo-Young, M.; Lamptey, J.; Glick, B.; Bungay, H., (1987)Biomass Conversion Technology, Pergamon: New York.Google Scholar
  14. Stanbury, P.F.; Whitaker, A., (1984).Principles of Fermentation Technology, Pergamon: New York.Google Scholar
  15. Vandermeulen, J.H.; Hrudey, S.E., (1987).Oil in Freshwater: Chemistry, Biology and Countermeasure Technology, Pergamon: New York.Google Scholar
  16. Westover, L.B.; Tou, J.C.; Mark, J.H., (1974).Anal. Chem., 46(4), 568.Google Scholar

Copyright information

© Science & Technology Letters 1989

Authors and Affiliations

  • Mark J. Hayward
    • 1
  • Anita K. Lister
    • 1
  • Tapio Kotiaho
    • 1
  • R. Graham Cooks
    • 1
  • Glen D. Austin
    • 2
  • Ramani Narayan
    • 2
  • George T. Tsao
    • 2
  1. 1.Department of ChemistryPurdue UniversityWest Lafayette
  2. 2.Laboratory of Renewable Resources EngineeringPurdue UniversityWest Lafayette
  3. 3.Chemical LaboratoryTechnical Research Center of FinlandEspooFinland

Personalised recommendations