Skip to main content
Log in

The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi

  • Mini Review
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Cyanobacteria (blue-green algae) and eukaryote algae occur in freshwater, marine, and terrestrial (soil) habitats. In fact, these microorganisms comprise most of the world's biomass. Although the cyanobacteria are mostly photoautotrophic, some are facultative heterotrophs, capable of growing on certain substrates in darkness. Also, some are non-phototrophic and hence, are obligate heterotrophs. A number of cyanobacteria and eukaryote algae, particularly macroalgae, produce various, biologically active compounds. These include antibiotics which in laboratory tests inhibited bacteria and fungi that incite diseases of humans. In addition, the following fungi which are of interest to plant pathologists, were inhibitedin vitro by substances produced by various cyanobacteria: The saprophytesChaetomium globosum, Cunninghamella blakesleeana, andAspergillus oryzae and the plant pathogensRhizoctonia solani andSclerotinia sclerotiorum. Extracts from seaweeds (macroalgae) sprayed on plants have been reported to reduce the incidence ofBotrytis cinerea (gray mold) on strawberries,Erysiphe polygoni (powdery mildew) on turnips, and damping-off of tomato seedlings. Because many cyanobacteria and algae produce a large number of antibacterial and antifungal materials, are almost never a threat to the environment, and many can be grown in quantity in mass culture, they are suitable candidates for exploitation as biocontrol agents of plant pathogenic bacteria and fungi. Much additional work remains to be done however, to thoroughly evaluate cyanobacteria and algae and their products for this role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott JA and Hollenberg GJ (1976) Marine Algae of California. Stanford University Press, Stanford, California, USA 827 pp.

    Google Scholar 

  • Abetz P and Young CL (1983) The effect of seaweed extract sprays derived fromAscophyllum nodosum on lettuce and cauliflower crops. Bot Marina 26: 487–492

    Google Scholar 

  • Acreman J (1994) Algae and cyanobacteria: isolation, culture and long-term maintenance. J. Indus Microbiol 13: 193–194

    Google Scholar 

  • Accorinti J (1983) Antifungal products from algal origin (Review). Rev Intl Ocean Med 72: 45–53y

    Google Scholar 

  • Attaway DH and Zaborsky OR (eds) (1993) Marine Biotechnology, Vol. 1. Pharmaceutical and Bioactive Natural Products. Plenum Press, New York, NY, USA 500 pp.

    Google Scholar 

  • Baldwin NA and Whitton BA (1992) Cyanobacteria and eukaryotic algae in sports turf and amenity grasslands: a review. J Appl Phycol 4: 39–47

    Google Scholar 

  • Ballantine DL, Gerwick WH, Velez SM, Alexander E and Guevara P (1987) Antibiotic activity of lipid-soluble extraets from Caribbean marine algae. Hydrobiologia 151/152: 463–469

    Google Scholar 

  • Ballesteros E, Martin D and Uriz MJ (1992) Biological activity of extracts from some Mediterranean macrophytes. Bot Marina 35: 481–485

    Google Scholar 

  • Banner AH (1959) A dermatitis-producing alga in Hawaii. Hawaii, Med J 19: 35–36

    Google Scholar 

  • Bentley-Mowat JA and Reid SM (1968) Investigation of the radish leaf bioassay for kinetins and demonstration of kinetin-like substances in algae. Ann Bot 32: 23–32

    Google Scholar 

  • Bernart MW, Whatley GG and Gerwick WH (1993) Unprecedented oxylipins from the marine green algaAcrosiphonia coalita. J Nat Prod 56: 245–259

    Google Scholar 

  • Bold HC and Wynne MJ (1985) Introduction to the Algae (2nd ed.). Prentice-Hall, Englewood Cliffs, New Jersey, USA 720 pp

    Google Scholar 

  • Bonjouklian R, Smitka TA, Doolin LE, Molloy RM, Debono M, Shaffer SA, Moore RE, Stewart JB and Patterson GML (1991) Tjipanazoles, new antifungal agents from the blue-green algaTolypothrix tjipanasensis Tetrahedron 47: 7739–7750

    Google Scholar 

  • Borowitzka LJ and Borowitzka MA (1989) Industrial production: methods and economics. In: Cresswell RC, Rees TAV and Shah N (eds), Algal and cyanobacterial biotechnology (pp 294–316). Longman, Essex, UK

    Google Scholar 

  • Borowitzka MA and Borowitzka LJ (eds) (1988) Micro-algal Biotechnology. Cambridge University Press, New York, NY, USA 477 pp

    Google Scholar 

  • Bosca C, Dauta A and Marvalin O (1991) Intensive outdoor algal cultures: How mixing enhances the photosynthetic production rate. Biores Tech 38: 185–188

    Google Scholar 

  • Burkholder PR, Burkholder LM and Almodovar LR (1960) Antibiotic activity of some marine algae of Puerto Rico. Bot Marina 2: 149–156

    Google Scholar 

  • Burris J (1994) Film coating perspective. Seed World 132: 36–40

    Google Scholar 

  • Caire GZ de, Mulé MCZ de, Doallo S, Halperin DR de and Halperin L (1976) Action of aqueous and ethereal algal extracts ofNostoc muscorum Ag. (No 79a). I. Effect on millet seedlings (Panicum miliaceum L.) by means of seed treatment. Bol Soc Argentina Bot 17: 289–300 (In Spanish with English summary)

    Google Scholar 

  • Caire GZ de, Cano MS de, Mulé MCZ, de, Halperin DR de and Galvagno M (1987) Action of cell-free extracts and extracellular products ofNostoc muscorum on growth ofSclerotinia sclerotiorum. Phyton 47: 43–46

    Google Scholar 

  • Campbell R (1989) Biological Control of Microbial Plant Pathogens. Cambridge Univ Press, Cambridge, UK (218 pp)

    Google Scholar 

  • Cannell RJP (1993) Algae as a source of biologically active products. Pestic Sci 39: 147–153

    Google Scholar 

  • Cano MMS de, Mulé MCZ de, Caire GZ de and Halperin DR de (1990) Inhibition ofCandida albicans and Staphylococcus aureus by phenolic compounds from the terrestrial cyanobacteriumNostoc muscorum. J Appl Phycol 2: 79–81

    Google Scholar 

  • Cardellina JH II, Marner F-J and Moore RE (1979) Seaweed dermatitis: Structure of Lyngbyatoxin A. Science 204: 193–195

    Google Scholar 

  • Cardellina JH II, Moore RE, Arnold EV and Clardy J (1979) Structure and absolute configuration of malyngolide, an antibiotic from the marine blue-green algaLyngbya majuscula Gomont. J Org Chem 44: 4039–4042

    Google Scholar 

  • Carmichael WW (1992) Cyanobacteria secondary metabolites—the cyanotoxins. J Appl Bact 72: 445–459

    Google Scholar 

  • Chen JL, Moghaddam MF and Gerwick WH (1993) Gloiosiphones A and B, novel metabolites from the red marine algaGloiosiphonia verticillaris. J Nat Prod. 56: 1205–1210

    Google Scholar 

  • Cohen Z (1986) Products from microalgae. In: Richmond A (ed), CRC handbook of microalgal mass culture (pp 421–454). CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  • Cresswell RC, Rees TAV and Shah N (eds) (1989) Algal and Cyanobacterial Biotechnology. Longman, Harlow, Essex, UK, 341 pp

    Google Scholar 

  • Fish SA and Codd GA (1994) Bioactive compound production by thermophilic and thermotolerant cyanobacteria (blue-green algae). World J Microbiol Biotech 10: 338–341

    Google Scholar 

  • Frankmölle WP, Larsen LK, Caplan FR, Patterson GML, Knübel G, Levine IA, and Moore RE (1992a) Antifungal cyclic peptides from the terrestrial blue-green alga,Anabaena laxa. I. Isolation and biological properties. J Antibiotics 45: 1451–1457

    Google Scholar 

  • Frankmölle WP, Knübel G, Moore RE and Patterson GML (1992b) Antifungal cyclic peptides from the terrestrial blue-green algaAnabaena laxa. II. Structures of laxaphycins A, B, D and E. J Antibiotics 45: 1458–1466

    Google Scholar 

  • Gerwick WH (1987) Drugs from the Sea—The Search Continues. J Pharm Tech July/August, pp 136–141

  • Gerwick WH, Jiang ZD, Agarwal SK and Farmer BT (1992) Total structure of hormothamnin A, a toxic cyclic undecapeptide from the tropical marine cyanobacteriumHormothamnion enteromorphoides. Tetrahedron 48: 2313–2324

    Google Scholar 

  • Gerwick WH, Mrozek C, Moghaddam MF and Agarwal SK (1989) Novel cytotoxic peptides from the tropical marine cyanobacteriumHormothamnion enteromorphoides. 1. Discovery, isolation and initial chemical and biological characterization of the hormothamnins from wild and cultured material. Experientia 45: 115–121

    Google Scholar 

  • Gerwick, WH, Proteau PJ, Nagle DG, Hamel E, Blokhin A and Slate DL (1994) Structure of curacin A, a novel antimitotic, antiproliferative, and brine shrimp toxic natural product from the marine cyanobacteriumLyngbya majuscula. J Org Chem 59: 1243–1245

    Google Scholar 

  • Gerwick, WH, Roberts MA, Proteau PJ and Chen J-L (1994) Screening cultured marine microalgae for anticancer-type activity. J Appl Phycol 6: 143–149

    Google Scholar 

  • Grauer FH (1959) Dermatitis escharotica caused by a marine alga. Hawaii Med J 19: 32–34

    Google Scholar 

  • Gupta AB and Gupta KK (1973) Effect ofPhormidium extract on growth and yield ofVigna catjang (cowpea) T. 6269. Hydrobiologica 41: 127–132

    Google Scholar 

  • Gupta AB and Shukla AC (1968) Effect of algal extracts ofPhormidium spp. on growth and development of rice seedlings. Hydrobiologica 34: 77–84

    Google Scholar 

  • Gupta AB and Shrivastava GC (1965) On antibiotic properties of some freshwater algae. Hydrobiologica 25: 285–288

    Google Scholar 

  • Hoppe HA, Levring T and Tanaka Y (eds.) (1979) Marine Algae in Pharmaceutical Science. Walter de Gruyter, Berlin, Germany 807 pp

    Google Scholar 

  • Ikawa M and Sasner JJ (1990) The chemistry and physiology of algal toxins. In: Akatsuka I (ed) Introduction to Applied Phycology (pp 27–65). Academic Publishing Co., The Hague, The Netherlands

    Google Scholar 

  • Ishibashi M, Moore RE, Patterson GML, Xu C and Clardy J (1986) Scytophycins, cytotoxic and antimycotic agents from the cyanophyteScytonema pseudohofmanni. J Org Chem 51: 5300–5306

    Google Scholar 

  • Kaushik BD (1987) Laboratory Methods for Blue-Green Algae. Associated Publ. Co., New Delhi, India (171 pp)

    Google Scholar 

  • Kellam SJ, Cannell RJP, Owsianka AM and Walker JM (1988) Results of a large-scale screening programme to detect antifungal activity from marine and freshwater microalgae in laboratory culture. Brit Phycol J 23: 45–47

    Google Scholar 

  • Khaleafa AF, Kharboush MAM, Metwall A, Mohsen AF and Serwi A (1975) Antibiotic (fungicidal) action from extracts of some seaweeds. Bot Mar 18: 163–165

    Google Scholar 

  • Khoja T and Whitton BA (1971) Heterotrophic growth of blue-green algae. Arch Mikrobiol 79: 280–282

    Google Scholar 

  • Kobbia IA and Zaki D (1976) Biological evaluation of algal filtrates. Planta Med 30: 90–92

    Google Scholar 

  • Kugrens P (1980) The effect of algal inhibitors on higher plant tissues. Colorado Water Resources Research Institute Completion Report 98, Colorado State University, Fort Collins, Colorado, USA 26 pp

    Google Scholar 

  • Lawton LA and Codd GA (1991) Cyanobacterial (blue-green algal) toxins and their significance in UK and European waters. J Inst Water Environm Mgt 5: 460–465

    Google Scholar 

  • Li SH (1988) Cultivation and application of microalgae in People's Republic of China. In: Stadler T (ed) Algal Biotechnology (pp 41–54). Elsevier Appl Sci, London, UK

    Google Scholar 

  • Maloy OC (1993) Plant Disease Control: Principles and Practice (346 pp.). John Wiley & Sons, New York, NY, USA

    Google Scholar 

  • Matusiak K and Krzywicka A (1975) Influence of the extract ofChlorella vulgaris on growth of fungi. Acta Microbiol Polon Ser B, 7: 51–54

    Google Scholar 

  • Metting B (1981) The systematics and ecology of soil algae. Bot Rev 47: 195–311

    Google Scholar 

  • Metting B and Pyne JW (1986) Biologically active compounds from microalgae. Enzyme Microb Technol 8: 386–394

    Google Scholar 

  • Mohn FH (1988) Harvesting of micro-algal biomass. In: Borowitzka MA and Borowitzka LJ (eds) Micro-algal biotechnology (pp 395–414). Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Moikeha SN and Chu GW (1971) Dermatitis-producing algaLyngbya majuscula Gomont in Hawaii. II. Biological properties of the toxic factor. J Phycol 7: 8–13

    Google Scholar 

  • Moon S-S, Chen JL, Moore RE and Patterson GML (1992) Calophycin, a fungicidal cyclic decapeptide from the terrestrial blue-green algaCalothrix fusca. J Org Chem 57: 1097–1103

    Google Scholar 

  • Moon RE and Martin DF (1981) Assay of diverse biological activities of materials elaborated by a marine blue-green alga,Gamphosphaeria aponina. Microbios Lett 18: 103–110

    Google Scholar 

  • Moore RE (1977) Toxins from blue-green algae. Bioscience 27: 797–802

    Google Scholar 

  • Moore RE, Cheuk C, Yang X-QG, Patterson GML, Bonjouklian R, Smitka TA, Mynderse JS, Foster RS, Jones ND, Swartzendruber JK and Deeter JB (1987) Hapalindoles, antibacterial and antimycotic alkaloids from the cyanophyteHapalosiphon fontinalis. J Org Chem 52: 1036–1043

    Google Scholar 

  • Moore RE, Yang X-QG, Patterson GML, Bonjouklian R and Smitka TA. (1989) Hapalonamides and other oxidized hapalindoles fromHapalosiphon fontinalis. Phytochemistry 28: 1565–1567

    Google Scholar 

  • Mulé MCZ de, Caire GZ de, Doallo S, Halperin DR de and Halperin L (1977) Action of aqueous and ethereal algal extracts ofNostoc muscorum Ag. (No. 79a). II. Effect on the development of the fungusCunninghamella blakesleeana (-) in Mehlich's medium. Bol Soc Argentina Bot 18: 121–128 (In Spanish with English summary)

    Google Scholar 

  • Oswald WJ (1988) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA and Borowitzka LJ (eds) Microalgal biotechnology (pp 357–394). Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Pande BN and Gupta AB (1977) Antibiotic properties inChlorococcum humicolum (Naeg) Rabenh. (Chlorophyceae). Phycologia 16: 439–441

    Google Scholar 

  • Parker BC (1961) Facultative heterotrophy in certain soil algae from the ecological viewpoint. Ecology 42: 381–386

    Google Scholar 

  • Parker BC, Bold HC and Deason TR (1961) Facultative heterotrophy in some Chlorococcacean algae. Science 133: 761–763

    Google Scholar 

  • Patterson GML, Baker KL, Baldwin CL, Bolis CM, Caplan FR, Larsen LK, Levine IA, Moore RE, Nelson CS, Tschappat KD, Tuang GD, Boyd MR, Cardellina JH II, Collins RP, Gustafson KR, Snader KM, Weislow OS and Lewin RA (1993) Antiviral activity of cultured blue-green algae (cyanophyta). J Phycol 29: 125–130

    Google Scholar 

  • Patterson GML, Baldwin CL, Bolis CM, Caplan FR, Karuso H, Larsen LK, Levine IA, Moore RE, Nelson CS, Tschappat KD, Tuang GD, Furusawa E, Furusawa S, Norton TR and Raybourne RB (1991) Antineoplastic activity of cultured blue-green algae (cyanophyta). J Phycol 27: 530–536

    Google Scholar 

  • Patterson GML, Larsen LK and Moore RE (1994) Bioactive natural products from blue-green algae. J Appl Phycol 6: 151–157

    Google Scholar 

  • Pratt R, Mautner H, Gardner GM, Sha Y-H and Dufrenoy J (1951) Report on antibiotic activity of seaweed extracts. J Amer Pharm Assoc 40: 575–579

    Google Scholar 

  • Radmer RJ and Parker BC (1994) Commercial applications of algac: opportunities and constraints. J Appl Phycol 6: 93–98

    Google Scholar 

  • Ramamurthy VD (1970) Antibacterial activity of the marine bluegreen algaTrichodesmium erythraeum in the gastro-intestinal contents of the sea gullLaurus brunicephalus. Marine Biol 6: 74–76

    Google Scholar 

  • Raven JA (1988) Limits to growth. In: Borowitzka MA and Borowitzka LJ (eds) Micro-algal biotechnology (pp 331–356). Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Raven PH, Evert RF and Eichorn SE (1992) Biology of Plants, 5th ed., Worth Publishers, New York, NY, USA, 791 pp

    Google Scholar 

  • Richmond A (ed) (1986) CRC Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, Florida, USA 528 pp

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M and Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61

    Google Scholar 

  • Rosell K-G and Srivastava LM (1987) Fatty acids as antimicrobial substances in brown algae. Hydrobiologia 151–152: 471–475

    Google Scholar 

  • Round FE (1984) The Ecology of Algae. Cambridge University Press, Cambridge, UK, 653 pp

    Google Scholar 

  • Russo RO and Berlyn GP (1992) Vitamin-humic-algal root biostimulant increases yield of green bean. HortScience 27: 847

    Google Scholar 

  • Sastry VMVS and Rao GRK (1994) Antibacterial substances from marine algae: Successive extraction using benzene, chloroform and methanol. Bot Mar 37: 357–360

    Google Scholar 

  • Schneider CW and Searles RB (1991) Seaweeds of the Southeastern United States. Duke University Press, Durham, North Carolina, USA 553 pp

    Google Scholar 

  • Schwartz RE, Hirsch CF, Sesin DF, Flor JE, Chartrain M, Fromling RE, Harris GH, Salvatore MJ, Liesch JM and Yudin K (1990) Pharmaceuticals from cultured algae. J Indus Microbiol 5, 113–124

    Google Scholar 

  • Shtina EA (1991) Regulations of the development of algae in soil. Pochvovedeniye 8: 57–65. (Translated from the Russian by Seripta Technica, Inc., Silver Spring, Maryland, USA)

    Google Scholar 

  • Smitka TA, Bonjouklian R, Doolin L, Jones ND, Deeter JB, Yoshida WY, Prinsep MR, Moore RE and Patterson GML (1992) Ambiguine isonitriles, fungicidal hapalindole-type alkaloics from three genera of blue-green algae belonging to the Stigonemataceae. J Org Chem 57: 857–861

    Google Scholar 

  • Stanier RY and Cohen-Bazire G (1977) Phototrophic prokaryotes: The cyanobacteria. Ann Rev Microbiol 1977. Vol 31 (pp 225–274)

    Google Scholar 

  • Starr RC and Zeikus JA (1993) UTEX-The culture collection of algae at the University of Texas at Austin. Supplement to J Phycol 29, No 2, April, 1993.

  • Stein JR (ed) (1973) Handbook of Phycological Methods. Cambridge Univ Press, Cambridge, UK

    Google Scholar 

  • Stephenson WM (1966) The effect of hydrolysed seaweed on certain plant pests and diseases. Proc 5th Intl Seaweed Symp, pp 405–415 Pergamon Press, Oxford, UK

    Google Scholar 

  • Stewart JB, Bornemann V, Chen JL, Moore RE, Caplan FR, Karuso H, Larsen LK and Patterson GML (1988) Cytotoxic, fungicidal nucleosides from bluegreen algae belonging to the Scytonemataceae. J Antibiotics 41: 1048–1056

    Google Scholar 

  • Tariq V-N (1991) Antifungal activity in crude extracts of marine red algae. Mycol Res 95: 1433–1436

    Google Scholar 

  • Tredici MR, Carlozzi P, Chini Zittelli G and Materassi R (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresource Tech 38: 153–159

    Google Scholar 

  • Venkataraman LV (1986) Blue-green algae as biofertilizer. In: Richmond A (ed) CRC Handbook of Microalgal Mass Culture (pp 455–472). CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  • Verkleij FN (1992) Seaweed extracts in agriculture and horticulture: a review. Biol Agric Hort 8: 309–324

    Google Scholar 

  • Vonshak, A (1986) Laboratory techniques for the cultivation of microalgae. In: Richmond A (ed), CRC handbook of microalgal mass culture (pp 117–145). CRC Press, Boca Raton, Florida USA

    Google Scholar 

  • Vonshak A (1990) Recent advances in microalgal biotechnology. Biotech Adv 8: 709–727

    Google Scholar 

  • Wainwright PO, Hinkle G, Sogin ML, and Stickel SK (1993) Monophyletic origins of the metazoa: An evolutionary link with the fungi. Science 260: 340–342

    Google Scholar 

  • Wang Q-l, Liu Y-d, Shen Y-w, Jin C-y, Lu J-s, Zhu J-m and Li S-h (1991) Studies on mixed mass cultivation ofAnabaena spp. (nitrogen-fixing blue-greenalgae, cyanobacteria) on a large scale. Bioresource Tech 38: 221–228

    Google Scholar 

  • Welch AM (1962) Preliminary survey of fungistatic properties of marine algae. J Bacteriol 83: 97–99

    Google Scholar 

  • Whipps JM and McQuilken MP (1993) Aspects of biocontrol of fungal plant pathogens. In: Jones DG (ed) Exploitation of Microorganisms (pp 45–79). Chapman & Hall, London, UK

    Google Scholar 

  • Zimmerman WJ (1992) Microalgal biotechnology and applications in agriculture. In: Metting FB Jr (ed), Soil Microbial Ecology (pp 457–479). Marcel Dekker, Inc, New York, NY, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulik, M.M. The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur J Plant Pathol 101, 585–599 (1995). https://doi.org/10.1007/BF01874863

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01874863

Key words

Navigation