European Journal of Plant Pathology

, Volume 101, Issue 4, pp 365–375 | Cite as

Pectin-degrading enzymes and plant-parasite interactions

  • Paolo Alghisi
  • Francesco Favaron
Mini Review

Key words

pectin degradation pectinases plant defence responses 



degree of depolymerization




polygalacturonase-inhibiting protein




pectate lyase


pectin methylesterase


pectin lyase

pel, peh, pem

gene symbol of pectate lyase, polygalacturonase and pectin methylesterase respectively


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldington S and Fry SC (1992) Plant cell wall-lysing enzymes in the apoplast of tomato leaves infected withFulvia fulva. Can. J. Bot. 70: 607–613Google Scholar
  2. Barras F, van Gijsegem F and Chatterjee AK (1994) Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu. Rev. Phytopathol. 32: 201–234Google Scholar
  3. Bateman DF and Basham HG (1976) Degradation of plant cell walls and membranes by microbial enzymes. In: Heitefuss R and Williams PH (eds) Physiol. Plant Pathol. (pp. 316–355) Springer-Verlag, BerlinGoogle Scholar
  4. Beaulieu C, Boccara M and van Gijsegem F (1993) Pathogenic behavior of pectinase-defectiveErwinia chrysanthemi mutants on different plants. Mol. Plant-Microbe Interact. 6: 197–202Google Scholar
  5. Beaulieu C, MInsavage GV, Canteros BI and Stall RE (1991) Biochemical and genetic analysis of a pectate lyase gene fromXanthomonas campestris pv.vesicatoria. Mol. Plant-Microbe Interact. 4: 446–451Google Scholar
  6. Beaulieu C and van Gijsegem F (1990) Identification of plant-inducible genes inErwinia chrysanthemi 3937. J. Bacteriol. 172: 1569–1575Google Scholar
  7. Beaulieu C and van Gijsegem F (1992) Pathogenic behaviour of several mini-Mu-induced mutants ofErwinia chrysanthemi on different plants. Mol. Plant-Microbe Interact. 5: 340–346Google Scholar
  8. Bellincampi D, Salvi G, De Lorenzo G, Cervone F, Marfà V, Eberhard S, Darvill A and Albersheim P (1993) Oligogalacturonides inhibit the formation of roots on tobacco explants. Plant J. 4: 207–213Google Scholar
  9. Benhamou N, Lafitte C, Barthe JP and Esquerré-Tugayé MT (1991) Cell surface interactions between bean leaf cells andColletotrichum lindemuthianum. Cytochemical aspects of pectin breakdown and fungal endopolygalacturonase accumulation. Plant Physiol. 97: 234–244Google Scholar
  10. Bergmann CW, Ito Y, Singer D, Albersheim P, Darvill AG, Benhamou N, Nuss L, Salvi G, Cervone F and De Lorenzo G (1994) Polygalacturonase-inhibiting protein accumulates inPhaseolus vulgaris L. in response to wounding, elicitors and fungal infection. Plant J. 5: 625–634Google Scholar
  11. Boccara M and Chatain V (1989) Regulation and role in pathogenicity ofErwinia chrysanthemi 3937 pectin methylesterase. J. Bacteriol. 171: 4085–4087Google Scholar
  12. Boccara M, Diolez A, Rouve M and Kotoujansky A (1988) The role of individual pectate lyases ofErwinia chrysanthemi strain 3937 in pathogenicity on saintpaulia plants. Physiol. Mol. Plant Pathol. 33: 95–104Google Scholar
  13. Bock WG, Dongowski G, Göebel H und Krause M (1975) Nachweis der hemmung mikrobieller pektin- und pektatlyase durch pflanzeneigene inhibitoren. Die Nahrung 19: 411–416Google Scholar
  14. Bourson C, Favey S, Reverchon S and Robert-Baudouy J (1993) Regulation of the expression of apelA∶∶uidA fusion inErwinia chrysanthemi and demonstration of the synergistic action of plant extract with polygalacturonate on pectate lyase synthesis. J. Gen. Microbiol. 139: 1–9Google Scholar
  15. Branca C, De Lorenzo G and Cervone F (1988) Competitive inhibition of the auxin-induced elongation by a-D-oligogalacturonides in pea stem segments. Physiol. Plant. 72: 499–504Google Scholar
  16. Brown RL, Cleveland TE, Cotty PJ and Mellon JE (1992) Spread ofAspergillus flavus in cotton bolls, decay of interacarpellary membranes, and production of fungal pectinases. Phytopathology 82: 462–467Google Scholar
  17. Bruce RJ and West CA (1982) Elicitation of casbene synthetase in castor bean. The role of pectic fragments of the plant cell wall in elicitation by a fungal endopolygalacturonase. Plant Physiol. 69:1181–1188Google Scholar
  18. Bugbee WM (1993) A pectin lyase inhibitor protein from cell walls of sugar beet. Phytopathology 83: 63–68Google Scholar
  19. Bussink HJD, Brouwer KB, de Graaf LH, Kester HCM and Visser J (1991a) Identification and characterization of a second polygalacturonase gene ofAspergillus niger. Curr. Genet. 20: 301–307Google Scholar
  20. Bussink HJD, Buxton FP and Visser J (1991b) Expression and sequence comparison of theAspergillus niger andAspergillus tubigensis genes encoding polygalacturonase II. Curr. Genet. 19: 467–474Google Scholar
  21. Campbell AD and Labavitch JM (1991) Induction and regulation of ethylene biosynthesis by pectic oligomers in cultured pear cells. Plant Physiol. 97: 699–705Google Scholar
  22. Caprari C, Richter A, Bergmann C, Lo Cicero S, Salvi G, Cervone F and De Lorenzo G (1993) Cloning and characterization of a gene encoding theendopolygalacturonase ofFusarium moniliforme. Mycol. Res. 97: 497–505Google Scholar
  23. Carpita NC and Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30Google Scholar
  24. Cervone F, De Lorenzo G, Caprari C, Clark AJ, Desiderio A, Devoto A, Leckie F, Nuss L, Salvi G and Toubart P (1993) The interaction between fungalendopolygalacturonase and plant cell wall PGIP (polygalacturonase-inhibiting protein). In: Fritig B and Legrand M (eds) Mechanisms of Plant Defence Responses (pp. 64–67) Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  25. Cervone F, Hahn MG, De Lorenzo G, Darvill AG and Albersheim P (1989) Host-pathogen interactions. XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol. 90: 542–548Google Scholar
  26. Chatterjee AK, McEvoy JL, Murata H and Collmer A (1991) Regulation of the production of pectinases and other extracellular enzymes in the soft-rottingErwinia spp. In: Patil SS, Ouchi S, Mills D and Vance C (eds) Molecular Strategies of Pathogens and Host Plants (pp. 45–55) Springer-Verlag, BerlinGoogle Scholar
  27. Cleveland TE and Cotty PJ (1991) Invasiveness ofAspergillus flavus isolates in wounded cotton bolls is associated with production of a specific fungal polygalacturonase. Phytopathology 81: 155–158Google Scholar
  28. Collmer A, Bauer DW, He SY, Lindeberg M, Kelemu S, Rodriguez-Palenzuela P, Burr TJ and Chatterjee AK (1991) Pectic enzyme production and bacterial plant pathogenicity. In: Hennecke H and Verma DPS (eds) Advances in Molecular Genetics of Plant-Microbe Interactions. vol. I (pp. 65–72) Kluwer Academic Publishers, AmsterdamGoogle Scholar
  29. Collmer A and Keen NT (1986) The role of pectic enzymes in plant pathogenesis. Annu. Rev. Phytopathol. 24: 383–409Google Scholar
  30. Collmer A, Schoedel C, Roeder DL, Ried JL and Rissler JF (1985) Molecular cloning inEscherichia coli ofErwinia chrysanthemi genes encoding multiple forms of pectate lyase. J. Bacteriol. 161: 913–920Google Scholar
  31. Condemine G, Dorel C, Hugouvieux-Cotte-Pattat N and Robert-Baudouy J (1992) Some of theout genes involved in the secretion of pectate lyases inErwinia chrysanthemi are regulated bykdgR. Mol. Microbiol. 6: 3199–3212Google Scholar
  32. Condemine G, Hugouvieux-Cotte-Pattat N and Robert-Baudouy J (1986) Isolation ofErwinia chrysanthemi kduD mutants altered in pectin degradation. J. Bacteriol. 165: 937–941Google Scholar
  33. Cooper RM (1983) The mechanisms and significance of enzymic degradation of host cell walls by parasites. In: Callow JA (ed) Biochemical Plant Pathology (pp. 101–135) Wiley & Sons, New YorkGoogle Scholar
  34. Cousson A, Toubart P and Tran Thanh Van K (1989) Control of morphogenetic pathway in thin cell layers of tobacco by pH. Can. J. Bot. 67: 650–654Google Scholar
  35. Crawford MS and Kolattukudy PE (1987) Pectate lyase fromFusarium solani f.sp.pisi: Purification, characterization,in vitro translation of the mRNA, and involvement in pathogenicity. Arch. Biochem. Biophys. 258: 196–205Google Scholar
  36. Davis KR, Lyon GD, Darvill AG and Albersheim P (1984) Host-pathogen interactions. XXV. Endopolygalacturonic acid lyase fromErwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments. Plant Physiol. 74: 52–60Google Scholar
  37. Davis KR, Darvill AG, Albersheim P and Dell A (1986) Host-pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. Plant Physiol. 80: 568–577Google Scholar
  38. Davis KR and Hahlbrock K (1987) Induction of defense responses in cultured parsley cells by plant cell wall fragments. Plant Physiol. 85: 1286–1290Google Scholar
  39. Dean RA and Timberlake WE (1989) Regulation of theAspergillus nidulans pectate lyase gene (pelA). Plant Cell 1: 275–284Google Scholar
  40. De Lorenzo G, Castoria R, Bellincampi D and Cervone F Fungal invasion enzymes and their inhibition. In: Carrol G and Tudzynski P (eds) The Mycota (in press) Springer-Verlag, BerlinGoogle Scholar
  41. De Lorenzo G and Cervone F (1986) Differential absorption rate of polygalacturonase from two races ofColletotrichum lindemuthianum to resistant and susceptible cultivars ofPhaseolus vulgaris L. Annali Botanica 44: 147–154Google Scholar
  42. De Lorenzo G, Cervone F, Bellincampi D, Caprari C, Clark AI, Desiderio A, Devoto A, Forrest R, Leckie F, Nuss L and Salvi G (1994) Polygalacturonase, PGIP and oligogalacturonides in cell-cell communication. Biochem. Soc. Trans. 22: 394–397Google Scholar
  43. De Lorenzo G, Igo Y, D'Ovidio R, Cervone F, Albersheim P and Darvill AG (1990) Host-pathogen interactions. XXXVII. Abilities of the polygalacturonase-inhibiting proteins from four cultivars ofPhaseolus vulgaris to inhibit theendopolygalacturonases from three races ofColletotrichum lindemuthianum. Physiol. Mol. Plant Pathol. 36: 421–435Google Scholar
  44. Denny TP, Carney BF and Schell MA (1990) Inactivation of multiple virulence genes reduces the ability ofPseudomonas solanacearum to cause wilt symptoms. Mol. Plant-Microbe Interact. 3: 293–300Google Scholar
  45. Dori S, Hershenhorn J, Solel Z and Barash I (1992) Characterization of an endopolygalacturonase associated with take-all disease of wheat. Physiol. Mol. Plant Pathol. 40: 203–210Google Scholar
  46. Dow JM, Milligan DE, Jamieson L, Barber CE and Daniels MJ (1989) Molecular cloning of a polygalacturonate lyase gene fromXanthomonas campestris pv.campestris and role of the gene product in pathogenicity. Physiol. Mol. Plant Pathol. 35: 113–120Google Scholar
  47. Dow JM, Scofield G, Trafford K, Turner PC and Daniels MJ (1987) A gene cluster inXanthomonas campestris pv.campestris required for pathogenicity controls the excretion of polygalacturonate lyase and other enzymes. Physiol. Mol. Plant Pathol. 31: 261–271Google Scholar
  48. Dums F, Dow JM and Daniels MJ (1991) Structural characterization of protein secretion genes of the bacterial phytopathogenXanthomonas campestris pathovarcampestris: relatedness to secretion systems of other gram-negative bacteria. Mol. Gen. Genet. 229: 357–364Google Scholar
  49. Durrands PK and Cooper RM (1988) The role of pectinases in vascular wilt disease as determined by defined mutants ofVerticillium albo-atrum. Physiol. Mol. Plant Pathol. 32: 363–371Google Scholar
  50. Favaron F, Alghisi P and Marciano P (1992) Characterization of twoSclerotinia sclerotiorum polygalacturonases with different abilities to elicit glyceollin in soybean. Plant Sci. 83: 7–13Google Scholar
  51. Favaron F, Alghisi P, Marciano P and Magro P (1988) Polygalacturonase isoenzymes and oxalic acid produced bySclerotinia sclerotiorum in soybean hypocytols as elicitors of glyceollin. Physiol. Mol. Plant Pathol. 33: 385–395Google Scholar
  52. Favaron F, Castiglioni C and Di Lenna P (1993a) Inhibition of some rot fungi polygalacturonases byAllium cepa L. andAllium porrum L. extracts. J. Phytopathol. 139: 201–206Google Scholar
  53. Favaron F, D'Ovidio R, Porceddu E and Alghisi P (1994) Purification and molecular characterization of a soybean polygalacturonase-inhibiting protein. Planta 195: 80–87Google Scholar
  54. Favaron F and Marciano P (1992) Polygalacturonase regulation inSclerotinia sclerotiorum: effect of carbon source on the isoenzymatic pattern. Riv. Pat. Veg. 2: 111–123Google Scholar
  55. Favaron F, Peretto R, Bonfante P and Alghisi P (1993b). Differential absorption and localization of twoSclerotinia sclerotiorum endo-polygalacturonases in soybean hypocotyls. Physiol. Mol. Plant Pathol. 43: 353–364Google Scholar
  56. Frittrang AK, Deising H and Mendgen K (1992) Characterization and partial purification of pectinesterase, a differentiation-specific enzyme ofUromyces viciae-fabae. J. Gen. Microbiol. 138: 2213–2218Google Scholar
  57. Fry SC, Aldington S, Hetherington PR and Aitken J (1993) Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiol. 103: 1–5Google Scholar
  58. Gao S and Shain L (1994) Characterization of an endopolygalacturonase produced by chestnut blight fungus. Physiol. Mol. Plant Pathol. 45: 169–179Google Scholar
  59. Godoy G, Steadman JR, Dickman MB and Dam R (1990) Use of mutants to demonstrate the role of oxalic acid in pathogenicity ofSclerotinia sclerotiorum onPhaseolus vulgaris. Physiol. Mol. Plant Pathol. 37: 179–191Google Scholar
  60. Gonzales-Candelas L and Kolattukudy PE (1992) Isolation and analysis of a novel inducible pectate lyase gene from the phytopathogenic fungusFusarium solani f.sp.pisi (Nectria haematococca, mating population VI). J. Bacteriol. 174: 6343–6349Google Scholar
  61. Hahn MG, Bucheli P, Cervone F, Doares SH, O'Neill RA, Darvill AG and Albersheim P (1989) Roles of cell wall constituents in plant-pathogen interactions. In: Kosuge T and Nester EW (eds) Plant-Microbe Interactions. Molecular and Genetic Perspectives. Vol. 3 (pp. 131–181) McGraw-Hill, New YorkGoogle Scholar
  62. Hahn MG, Cheong JJ, Alba R, Enkerli J and Côté F (1993) Oligosaccharide elicitors: structures and recognition. In: Fritig B and Legrand M (eds) Mechanisms of Plant Defense Responses (pp. 99–116) Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  63. Heiler S, Mendgen K and Deising H (1993) Cellulolytic enzymes of the obligately biotrophic rust fungusUromyces viciae-fabae are regulated differentiation-specifically. Mycol. Res. 97: 77–85Google Scholar
  64. Hinton JCD, Gill DR, Lalo D, Plastow GS and Salmond GPC (1990) Sequence of thepeh gene ofErwinia carotovora: homology betweenErwinia and plant enzymes. Mol. Microbiol. 4: 1029–1036Google Scholar
  65. Holz G and Knox-Davies PS (1985) Production of pectic enzymes byFusarium oxysporum f. sp.cepae and its involvement in onion bulb rot. Phytopath. Z. 112: 69–80Google Scholar
  66. Hugouvieux-Cotte-Pattat N, Dominguez H and Robert-Baudouy J (1992) Environmental conditions affect transcription of the pectinase genes ofErwinia chrysanthemi 3937. J. Bacteriol. 174: 7807–7818Google Scholar
  67. Hugouvieux-Cotte-Pattat N and Robert-Baudouy J (1987) Hexuronate catabolism inErwinia chrysanthemi. J. Bacteriol. 169: 1223–1231Google Scholar
  68. Hugouvieux-Cotte-Pattat N and Robert-Baudouy J (1992) Analysis of the regulation of thePelBC genes inErwinia chrysanthemi 3937. Mol. Microbiol. 6: 2363–2376Google Scholar
  69. Itoh Y, Izaki K and Takahashi H (1980) Simultaneous synthesis of pectin lyase and carotovoricin induced by mitomycin C., nalidixic acid for ultraviolet light irradiation inErwinia chrysanthemi. Agr. Biol. Chem. 44: 1135–1140Google Scholar
  70. Itoh Y, Sugiura J, Izaki K and Takahashi H (1982) Enzymological and immunological properties of pectin lyases from bacteriocinogenic strains ofErwinia carotovora. Agr. Biol. Chem. 46: 199–205Google Scholar
  71. Johnston DJ, Ramanathan V and Williamson B (1993) A protein from immature raspberry fruits which inhibits endopolygalacturonases fromBotrytis cinerea and other micro-organisms. J. Exp. Bot. 44: 971–976Google Scholar
  72. Johnston DJ and Williamson B (1992) Purification and characterization of four polygalacturonases fromBotrytis cinerea. Mycol. Res. 96: 343–349Google Scholar
  73. Kang Y, Huang J, Mao G, He L and Schell MA (1994) Dramatically reduced virulence of mutants ofPseudomonas solanacearum defective in export of extracellular proteins across the outer membrane. Mol. Plant-Microbe Interact. 7: 370–377Google Scholar
  74. Keen NT and Tamaki S (1986) Structure of two pectate lyase genes fromErwinia chrysanthemi EC16 and their high level expression inEscherichia coli. J. Bacteriol. 168: 595–606Google Scholar
  75. Kelemu S and Collmer A (1993)Erwinia chrysanthemi EC16 produces a second set of plant-inducible pectate lyase isozymes. Appl. Environ. Microbiol. 59: 1756–1761Google Scholar
  76. Keon JPR, Waksman G and Bailey JA (1990) A comparison of the biochemical and physiological properties of a polygalacturonase from two races ofColletotrichum lindemuthianum. Physiol. Mol. Plant Pathol. 37: 193–206Google Scholar
  77. Lafitte C, Barthe JP, Gansel X, Dechamp-Guillaume G, Faucher C, Mazau D and Esquerré-Tugayé MT (1993) Differential induction by endopolygalacturonase of β-1,3-glucanases inPhaseolus vulgaris isoline susceptible and resistant toColletotrichum lindemuthianum race β. Mol. Plant-Microbe Interact. 6: 628–634Google Scholar
  78. Leone G, Overkamp AN, Kreyenbroek MN, Smit E and Van den Heuvel J (1990) Regulation by orthophosphate and adenine nucleotides of the biosynthesis of two polygalacturonases byBotrytis cinerea in vitro. Mycol. Res. 94: 1031–1038Google Scholar
  79. Leone G and Van den Heuvel J (1987) Regulation by carbohydrates of the sequentialin vitro production of pectic enzymes byBotrytis cinerea. Can. J. Bot. 65: 2133–2141Google Scholar
  80. Liao C-H (1991) Cloning of pectate lyase genepel fromPseudomonas fluorescens and detection of sequence homologous topel inPseudomonas viridiflava andPseudomonas putida. J. Bacteriol. 173: 4386–4393Google Scholar
  81. Liao C-H, Hung H-Y and Chatterjee AK (1988) An extracellular pectate lyase is the pathogenicity factor of the soft-rotting bacteriumPseudomonas viridiflava. Mol. Plant-Microbe Interact. 1: 199–206Google Scholar
  82. Liao C-H, McCallus DE and Wells JM (1993) Calcium-dependent pectate lyase production in the soft-rotting bacteriumPseudomonas fluorescens. Phytopathology 83: 813–818Google Scholar
  83. Liao C-H, Sasaki K, Nagahashi G and Hicks KB (1992) Cloning and characterization of a pectate lyase gene from the soft-rotting bacteriumPseudomonas viridiflava. Mol. Plant-Microbe Interact. 5: 30–308Google Scholar
  84. Lindeberg M and Collmer A (1992) Analysis of eightout genes in a cluster required for pectic enzyme secretion byErwinia chrysanthemi: Sequence comparison with secretion genes from other gram-negative bacteria. J. Bacteriol. 174: 7385–7397Google Scholar
  85. Liu Y, Chatterjee A and Chatterjee AK (1994) Nucleotide sequence and expression of a novel pectate lyase gene (pel-3) and a closely linked endopolygalacturonase gene (peh-1) ofErwinia carotovora subsp.carotovora 71. Appl. Environ. Microbiol. 60: 2545–2552Google Scholar
  86. Liu Y, Murata H, Chatterjee A and Chatterjee AK (1993) Characterization of a novel regulatory geneaepA that controls extracellular enzyme production in the phytopathogenic bacteriumErwinia carotovora subsp.carotovora. Mol. Plant-Microbe Interact. 6: 299–308Google Scholar
  87. Lojkowska E, Dorel C, Reignault P, Hugouvieux-Cotte-Pattat N and Robert-Baudouy J (1993) Use of GUS fusion to study the expression ofErwinia chrysanthemi pectinase genes during infection of potato tubers. Mol. Plant-Microbe Interact. 6: 488–494Google Scholar
  88. Mann B (1962) Role of pectic enzymes in theFusarium wilt syndrome of tomato. Trans. Br. Mycol. Soc. 45: 169–178Google Scholar
  89. Marciano P, Di Lenna P and Magro P (1982) Polygalacturonase isoenzymes produced bySclerotinia sclerotiorum in vivo andin vitro. Physiol. Plant Pathol. 20: 201–212Google Scholar
  90. Marcus L, Barash I, Sneh B, Koltin Y and Finkler A (1986) Purification and characterization of pectolytic enzymes produced by virulent and hypovirulent isolates ofRhizoctonia solani Kuhn. Physiol. Mol. Plant Pathol. 29: 325–336Google Scholar
  91. Marfà V, Gollin DJ, Eberhard S, Mohnen D, Darvill AG and Albersheim P (1991) Oligogalacturonides are able to induce flowers to form on tobacco explants. Plant Journal 1: 217–225Google Scholar
  92. Messiaen J and Van Cutsem P (1993) Defense gene transcription in carrot cells treated with oligogalacturonides. Plant Cell Physiol. 34: 1117–1123Google Scholar
  93. Nasser HW, Condemine G, Plantier R, Anker D and Robert-Baudouy J (1991) Inducing properties of analogs of 2-keto-3-deoxygluconate on the expression of pectinase genes ofErwinia chrysanthemi. FEMS Microbiol. Lett. 81: 73–78Google Scholar
  94. Nikaidou N, Kamio Y and Izaki K (1993) Molecular cloning and nucleotide sequence of the pectate lyase gene fromPseudomonas marginalis N6301. Biosci. Biotech. Biochem. 57: 957–960Google Scholar
  95. Palva TK, Holmstrom KO, Heino P, Palva ET (1993) Induction of plant defense response by exoenzymes ofErwinia carotovora subsp.carotovora. Mol. Plant-Microbe Interact. 6: 190–196Google Scholar
  96. Payne JH, Schoedel C, Keen NT and Collmer A (1987) Multiplication and virulence in plant tissues ofEscherichia coli clones producing pectate lyase isozymes PLb and PLe at high levels and of anErwinia chrysanthemi mutant deficient in PLe. Appl. Environ. Microbiol. 53: 2315–2320Google Scholar
  97. Pérez Artés E and Tena M (1990) Purification and characterization of pectic enzymes from two races ofFusarium oxysporum f. sp.ciceri differing in virulence to chickpea (Cicer arietinum L.). Physiol. Mol. Plant Pathol. 37: 107–124Google Scholar
  98. Perombelon MCM and Kelman A (1980) Ecology of the soft rot erwinias. Annu. Rev. Phytopathol. 18: 361–387Google Scholar
  99. Pirhonen M, Saarilahti H, Karlsson M-B and Palva ET (1991) Identification of pathogenicity determinants ofErwinia carotovora subsp.carotovora by transposon mutagenesis. Mol. Plant-Microbe Interact. 3: 276–283Google Scholar
  100. Powell ALT, D'hallewin G, Hall BD, Stotz H, Labavitch JM and Bennett AB (1994) Glycoprotein inhibitors of fungal polygalacturonases: expression of pear PGIP improves resistance in transgenic tomatoes (abstr.). Plant Physiol. 105: 880Google Scholar
  101. Prusky D, Gold S and Keen NT (1989) Purification and characterization of an endopolygalacturonase produced byColletotrichum gloeosporioides. Physiol. Mol. Plant Pathol. 35: 121–133Google Scholar
  102. Pugsley AP (1993) The complete general secretory pathway in Gram-negative bacteria. Microbiol. Rev. 57: 50–108Google Scholar
  103. Puhalla JE and Howell CR (1975) Significance of endopolygalacturonase activity to symptoms expression of verticillium wilt cotton, assessed by the use of mutants ofVerticillium dahliae Kleb. Physiol. Plant Pathol. 7: 147–152Google Scholar
  104. Pupillo P, Mazzucchi U and Pierini G (1976) Pectic lyase isozymes produced byErwinia chrysanthemi al. in polypectate broth or in Dieffenbachia leaves. Physiol. Plant Pathol. 9: 113–120Google Scholar
  105. Reeves PJ, Whitcombe D, Wharam S, Gibson M, Allison G, Bunce N, Barallon R, Douglas P, Mulholland V, Stevens S, Walker D and Salmond GPC (1993) Molecular cloning and characterization of 13out genes fromErwinia caratovora subspeciescarotovora: genes encoding members of a general secretion pathway (GSP) widespread in Gram-negative bacteria. Mol. Microbiol. 8: 443–456Google Scholar
  106. Reverchon S, Nasser W and Robert-Baudouy J (1991). Characterization ofkdgR, a gene ofErwinia chrysanthemi that regulates pectin degradation. Mol. Microbiol. 5: 2203–2216Google Scholar
  107. Ried JL and Collmer A (1988) Construction and characterization of anErwinia chrysanthemi mutant with directed deletions in all of the pectate lyase structural genes. Mol. Plant-Microbe Interact. 1: 32–38Google Scholar
  108. Riou C, Freyssinet G and Fevre M (1991) Production of cell wall-degrading enzymes by photopathogenic fungusSclerotinia sclerotiorum. Appl. Environ. Microbiol. 57: 1478–1484Google Scholar
  109. Riou C, Freyssinet G and Fevre M (1992) Purification and characterization of extracellular pectinolytic enzymes produced bySclerotinia sclerotiorum. Appl. Environ. Microbiol. 58: 578–583Google Scholar
  110. Rodriguez-Palenzuela P, Burr TJ and Collmer A (1991) Polygalacturonase is a virulence factor inAgrobacterium tumefaciens biovar 3. J. Bacteriol. 173: 6547–6552Google Scholar
  111. Rong L, Carpita NC, Mort A and Gelvin SB (1994) Soluble cell wall compounds from carrot roots induce thepicA andpgl loci ofAgrobacterium tumefaciens. Mol. Plant-Microbe Interact. 7: 6–14Google Scholar
  112. Ryan CA and Farmer EE (1991) Oligosaccharide signals in plants: a current assessment. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 651–674Google Scholar
  113. Salmond GPC (1994) Secretion of extracellular virulence factors by plant pathogenic bacteria. Annu. Rev. Phytopathol. 32: 181–200Google Scholar
  114. Salvi G, Giarrizzo F, De Lorenzo G and Cervone F (1990) A polygalacturonase-inhibiting protein in the flowers ofPhaseolus vulgaris L. J. Plant Physiol. 136: 513–518Google Scholar
  115. Sauvage C, Franza T and Expert D (1990) Iron as a modulator of pathogenicity ofErwinia chrysanthemi onSaintpaulia ionantha. In: Hennecke H and Verma DPS (eds) Advances in Molecular Genetics of Plant-Microbe Interactions. Vol. I (pp. 94–97) Kluwer Academic Publishers, AmsterdamGoogle Scholar
  116. Schell MA, Roberts DP and Denny TP (1988) Analysis of thePseudomonas solanaceraum polygalacturonase encoded bypglA and its involvement in phytopathogenicity. J. Bacteriol. 170: 4501–4508Google Scholar
  117. Scott SW and Fielding AH (1985) Differences in pectolytic enzyme patterns induced inSclerotinia trifoliorum by different legume host species. Trans. Br. Mycol. Soc. 84: 317–324Google Scholar
  118. Scott-Craig JS, Panaccione DG, Cervone F and Walton JD (1990) Endopolygalacturonase is not required for pathogenicity ofCochliobolus carbonum on maize. Plant Cell 2: 1191–1200Google Scholar
  119. Stotz HU, Contos JJA, Powell ALT, Bennet AB and Labavitch JM (1994) Structure and expression of an inhibitor of fungal polygalacturonases from tomato. Plant Mol. Biol. 25: 607–617Google Scholar
  120. Stotz HU, Powell ALT, Damon SE, Greve CG, Bennet AB and Labavitch JM (1993) Molecular characterization of a polygalacturonase inhibitor fromPyrus communis L. cv. Bartlett. Plant Physiol. 102: 133–138Google Scholar
  121. Tepper CS and Anderson AJ (1990) Interactions between pectic fragments and extracellular components from the fungal pathogenColletotrichum lindemuthianum. Physiol. Mol. Plant Pathol. 36: 147–158Google Scholar
  122. Tomizawa H and Takahashi H (1971) Stimulation of pectolytic enzyme formation ofErwinia aroideae by nalidixic acid, mitomycin C and bleomycin. Agr. Biol. Chem. 35: 191–200Google Scholar
  123. Toubart P, Desiderio A, Salvi G, Cervone F, Daroda L, De Lorenzo G, Bergmann C, Darvill AG and Albersheim P (1992) Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) ofPhseolus vulgaris L. Plant J. 2: 367–373Google Scholar
  124. Tsuyumu S and Chatterjee AK (1984) Pectin lyase production inErwinia chrysanthemi and other soft-rotErwinia species. Physiol. Plant Pathol. 24: 291–302Google Scholar
  125. Uritani I and Stahmann MA (1961) Pectolytic enzymes ofCeratocystis fimbriata. Phytopathology 51: 277–285Google Scholar
  126. Valsangiacomo C and Gessler C (1992) Purification and characterization of an exo-polygalacturonase produced byVenturia inaequalis, the causal agent of apple scab. Physiol. Mol. Plant Pathol. 40: 63–77Google Scholar
  127. Waksman G, Keon JPR and Turner G (1991) Purification and characterization of two endopolygalacturonases fromSclerotinia sclerotiorum. Biochim. Biophys. Acta 1073: 43–48Google Scholar
  128. Walker DS, Reeves PJ and Salmond GPC (1994) The major secretedcellulase, CeIV, ofErwinia carotovora subsp.carotovora is an important soft rot virulence factor. Mol. Plant-Microbe Interact. 7: 425–431Google Scholar
  129. Wattad C, Dinoor A and Prusky D (1994) Purification of pectate lyase produced byColletotrichum gloeosporioides and its inhibition by epicatechin: a possible factor involved in the resistance of unripe avocado fruits to anthracnose. Mol. Plant-Microbe Interact. 7: 293–297Google Scholar
  130. Wijesundera RLC, Bailey JA, Byrde RJW and Fielding AH (1989) Cell wall degrading enzymes ofColletotrichum lindemuthianum: their role in the development of bean anthracnose. Physiol. Mol. Plant Pathol. 34: 403–413Google Scholar
  131. Willis JW, Engwall JK and Chatterjee AK (1987) Cloning of genes forErwinia carotovora subsp.carotovora pectolytic enzymes and further characterization of the polygalacturonases. Phytopathology 77: 1199–1205Google Scholar
  132. Yang Z, Cramer CL and Lacy GH (1992)Erwinia carotovora subsp.carotovora pectic enzymes:in planta gene activation and roles in soft-rot pathogenesis. Mol. Plant-Microbe Interact. 5: 104–112Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Paolo Alghisi
    • 1
  • Francesco Favaron
    • 1
  1. 1.Istituto di Patologia VegetaleUniversità di PadovaPadovaItaly

Personalised recommendations