Acta Mathematica Hungarica

, Volume 62, Issue 3–4, pp 395–402 | Cite as

Isoperimetric inequalities and areas of projections in Rn

  • A. P. Burton
  • P. Smith


Isoperimetric Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Bandle,Isoperimetric Inequalities and Applications, Pitman (Boston, 1980).Google Scholar
  2. [2]
    Yu. D. Burago and V. A. Zalgaller,Geometric Inequalities, Springer (Berlin, 1988).Google Scholar
  3. [3]
    C.-C. Hsiung,A First Course in Differential Geometry, Wiley-Interscience (New York, 1981).Google Scholar
  4. [4]
    L. H. Loomis and H. Whitney, An inequality related to the isoperimetric inequality,Bull. Amer. Math. Soc.,55 (1949), 961–962.Google Scholar
  5. [5]
    R. Osserman, The isoperimetric inequality,Bull. Amer. Math. Soc.,84 (1978), 1182–1238.Google Scholar
  6. [6]
    E. Schmidt, Über das isoperimetrische Problem in Raum vonn Dimensionen,Math. Z.,44 (1939), 689–788.Google Scholar
  7. [7]
    I. J. Schoenberg, An isoperimetric inequality for closed curves convex in even-dimensional Euclidean spaces,Acta Math.,91 (1954), 143–164.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • A. P. Burton
    • 1
  • P. Smith
    • 1
  1. 1.Department of MatehematicsUniversity of KeeleEngland

Personalised recommendations