Advertisement

Acta Mathematica Hungarica

, Volume 67, Issue 4, pp 315–331 | Cite as

The Jung Theorem for spherical and hyperbolic spaces

  • B. V. Dekster
Article

Keywords

Hyperbolic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Yu. D. Burago, A problem on Jung's circle for a sphere (Russian),Matematicheskoye Prosveshchenie Moscow,6 (1961), 165–170.Google Scholar
  2. [2]
    L. Danzer, B. Grünbaum and V. Klee, Helly's Theorem and its relatives, inProceedings of Symposia in Pure Mathematics, Volume VII, Convexity, AMS (Providence, R.I., 1963).Google Scholar
  3. [3]
    B. V. Dekster, An extension of Jung's Theorem,Israel Journal of Math.,50 (1985), 169–180.Google Scholar
  4. [4]
    B. V. Dekster, Bodies of constant width in Riemannian manifolds and spaces of constant curvature.DIMACS Series in Discrete Math. and Theoretical Computer Sci.,4 (1991), Applied Geometry and Discrete Math., The Victor Klee Festschrift, 181–192.Google Scholar
  5. [5]
    B. V. Dekster and J. B. Wilker, Simplexes in spaces of constant curvature,Geometriae Dedicata,38 (1991), 1–12.Google Scholar
  6. [6]
    B. V. Dekster and J. B. Wilker, Large spherical simplexes,Journal of Geometry,42 (1991), 59–92.Google Scholar
  7. [7]
    Branko Grünbaum, Subsets ofS n contained in a hemisphere,An. du Acad. Brasileira de Cientas,32 (1960), 323–328.Google Scholar
  8. [8]
    J. Molnár, Über eine Übertragung des Hellyschen Satzes in sphärische Räume,Acta Math. Acad. Sci. Hungar.,8 (1957), 315–318.Google Scholar
  9. [9]
    L. A. Santaló, Convex regions on then-dimensional spherical surface,Annals of Math.,47 (1946), 448–452.Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • B. V. Dekster
    • 1
  1. 1.Department of Mathematics and Computer ScienceMount Allison UniversitySackvilleCanada

Personalised recommendations