The Journal of Membrane Biology

, Volume 6, Issue 1, pp 1–23

In Vitro excitation of purified membrane fragments by cholinergic agonists

I. Pharmalogical properties of the excitable membrane fragments
  • Michiki Kasai
  • Jean-Pierre Changeux


Excitation of membrane fragments by cholinergic agonists is measuredin vitro by a filtration technique. Membrane fragments which contain high levels of the enzyme acetylcholinesterase and presumably originate from the innervated excitable faces of electroplax are first purified from homogenates of electric organ ofElectrophorus electricus by centrifugation in a sucrose gradient. Then the fragments, which make closed vesicles or microsacs, are equilibrated overnight with a medium containing22Na+. After equilibration of the inside of the microsacs with the outside medium, the suspension is diluted into a nonradioactive medium. The22Na+ content of the microsacs as a function of time is then followed by rapid filtration on Millipore filters. In the presence of cholinergic agonists, the time course of22Na+ release changes: the rate of22Na+ release increases. This increase is blocked byd-tubocurarine and is absent with microsacs derived from the non-innervated inexcitable membrane of the electroplax. The response to cholinergic agonists is thus followed on a completely cell-free system, in a well-defined environment. The dose-response curves to cholinergic agents obtainedin vitro agree, quantitatively, with the dose-response curves recordedin vivo by electrophysiological methods. In particular, the dose-response curve to agonists is sigmoid, the antagonism betweend-tubocurarine and carbamylcholine competitive, and the antagonism between tetracaine and carbamylcholine noncompetitive. The effects of two different affinity labeling reagents on the response to agonists and on the catalytic activity of acetylcholinesterase are followed in parallel on the same microsac preparation. The effects of dithiothreitol and of gramicidin A on the microsacs are studied and are found to be similar to those observedin vivo with the isolated electroplax.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, P.F., Hodgkin, A.L., Shaw, T.I. 1961. Replacement of the protoplasm of a giant nerve fibre with artificial solutions.Nature 190:885.PubMedGoogle Scholar
  2. Bartels, E. 1965. Relationship between acetylcholine and local anesthetics.Biochim. Biophys. Acta 109:194.PubMedGoogle Scholar
  3. Bauman, A., Changeux, J.P., Benda, P. 1969. Purification of membrane fragments derived from the non-excitable surface of the eel electroplax.F. E. B. S. Letters 8:145.Google Scholar
  4. Benda, P., Tsuji, S., Daussent, J., Changeux, J.P. 1969. Localization of acetylcholinesterase by immunofluorescence in eel electroplax.Nature 225:1149.Google Scholar
  5. Brown, W.E., Hill, A. V. (1922–1923. The oxygen dissociation curve of blood and its thermodynamical basis.Proc. Roy. Soc. (London) B. 94:297.Google Scholar
  6. Changeux, J.P. 1966. Response of acetylcholinesterase fromTorpedo marmorata to salts and curarizing drugs.Mol. Pharmacol. 2:369.PubMedGoogle Scholar
  7. —, Gautron, M., Israël, M., Podleski, T.R. 1969. Séparation de membranes excitables à partir de l'organe électrique d'Electrophorus electricus.Compt. Rend. Acad. Sci. (Paris) 269:1788 D.Google Scholar
  8. —, Kasai, M., Lee, C.Y. 1970. The use of a snake of a snake venom toxin to characterize the cholinergic receptor protein.Proc. Nat. Acad. Sci. 67:1241.PubMedGoogle Scholar
  9. —, Podleski, T.R. 1968. On the excitability and cooperativity of the electroplax membrane.Proc. Nat. Acad. Sci. 59:944.PubMedGoogle Scholar
  10. ——, Kasaï, M., Blumenthal, R. 1970. Some molecular aspects of membrane excitation studied with the eel electroplax.In: Excitatory Synaptic Machanisms. P. Andersen and J.K.S. Jansen, editors. p. 123. Universitetsforlaget, Oslo.Google Scholar
  11. ——, Wofsy, L. 1967. Affinity labeling of the acetylcholine receptor.Proc Nat. Acad. Sci. 58:2063.PubMedGoogle Scholar
  12. —, Thiéry, J., Tung, Y., Kittel, C. 1967. On the cooperativity of biological membranes.Proc. Nat. Acad. Sci. 57:335.Google Scholar
  13. Ellman, G.L., Courtney, K.D., Andress, V., Featherstone, R. 1961. A new rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol. 7:88.CrossRefPubMedGoogle Scholar
  14. Fenton, J.W., Singer, S.J. 1965. Affinity labeling of antibodies to thep-azophenyltrimethylammonium hapten and a structural relationship among antibody active sites of different specificities.Biochem. Biophys. Res. Commun. 20:315.CrossRefPubMedGoogle Scholar
  15. Higman, H., Podleski, T.R., Bartels, E. 1969. Apparent dissociation constants between carbamylcholine,d-tubocurarine and the receptor.Biochim. Biophys. Acta 79:187.Google Scholar
  16. Hoskin, F. 1966. Anaerobic glycolysis in parts of the giant axon of the squid.Nature 210:856.PubMedGoogle Scholar
  17. Karlin, A., Bartels, E. 1966. Effects of blocking sulfhydryl groups and of reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax.Biochim. Biophys. Acta 126:525.PubMedGoogle Scholar
  18. —, Winnik, M. 1968. Reduction and specific alkylation of the receptor for acetylcholine.Proc. Nat. Acad. Sci. 60:668.PubMedGoogle Scholar
  19. Kasaï, M., Changeux, J.P. 1970. Démonstration de l'excitation par des agonistes cholinergiques à partir de fractions de membranes purifiées,in vitro.Compt. Rend. Acad. Sci. (Paris) 270:1400 D.Google Scholar
  20. Keynes, R.D., Martins-Ferreira, H. 1953. Membrane potentials in the electroplates of the electric eel.J. Physiol. 119:315.PubMedGoogle Scholar
  21. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265.PubMedGoogle Scholar
  22. Mautner, H.G., Bartels, E., Webb, G.D. 1966. Sulfur and selenium isologs related to acetylcholine and choline. IV. Activity in the electroplax preparation.Biochem. Pharmacol. 15:187.CrossRefPubMedGoogle Scholar
  23. Meunier, J.C., Changeux, J.P. 1969. On the irreversible binding ofp-(trimethylammonium) benzene diazonium fluoroborate to acetylcholinesterase from electrogenic tissue.F. E. B. S. Letters 2:224.Google Scholar
  24. Nachmansohn, D. 1959. Chemical and Molecular Basis of Nerve Activity. Academic Press, New York and London.Google Scholar
  25. Nachmansohn, D. 1971. Proteins in bioelectricity. Acetylcholine-esterase and-receptor.In: Handbook of Sensory Physiology, vol. 1. W. R. Loewenstein, editor. p. 18. Springer-Verlag. Berlin.Google Scholar
  26. Oikawa, T., Spyropoulos, C.S., Tasaki, I., Teorell, T. 1961. Methods for perfusing the giant axon ofLoligo pealii.Acta Physiol. Scand. 52:195.PubMedGoogle Scholar
  27. Podleski, T.R. 1967. Distinction between the active sites of acetylcholine receptor and acetylcholinesterase.Proc. Nat. Acad. Sci. 58:268.PubMedGoogle Scholar
  28. —, Bartels, E. 1963. Difference between tetracaine andd-tubocurarine in the competition with carbamylcholine.Biochim. Biophys. Acta 75:387.CrossRefPubMedGoogle Scholar
  29. —, Changeux, J.P. 1969. Effects associated with permeability changes caused by gramicidin A in electroplax membrane.Nature 221:541.PubMedGoogle Scholar
  30. Rang, H.P., Ritter, J.M. 1969. A new kind of drug antagonism; evidence that agonists cause a molecular change in acetylcholine receptors.Mol. Pharmacol. 5:394.PubMedGoogle Scholar
  31. Wofsy, L., Michaeli, D. 1967. Affinity labeling of the anionic site of acetylcholinesterase.Proc. Nat. Acad. Sci. 58:2296.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1971

Authors and Affiliations

  • Michiki Kasai
    • 1
  • Jean-Pierre Changeux
    • 1
  1. 1.Département de Biologie MoléculaireInstitut PasteurParisFrance

Personalised recommendations