The Journal of Membrane Biology

, Volume 48, Issue 2, pp 181–204 | Cite as

Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study

  • R. Benz
  • F. Beckers
  • U. Zimmermann


Charge-pulse experiments were performed with lipid bilayer membranes from oxidized cholesterol/n-decane at relatively high voltages (several hundred mV). The membranes show an irreversible mechanical rupture if the membrane is charged to voltages on the order of 300 mV. In the case of the mechanical rupture, the voltage across the membrane needs about 50–200 μsec to decay completely to zero. At much higher voltages, applied to the membrane by charge pulses of about 500 nsec duration, a decrease of the specific resistance of the membranes by nine orders of magnitude is observed (from 108 to 0.1 Ω cm2), which is correlated with the reversible electrical breakdown of the lipid bilayer membrane. Due to the high conductance increase (breakdown) of the bilayer it is not possible to charge the membrane to a larger value than the critical potential differenceVc. For 1m alkali ion chloridesVc was about 1 V. The temperature dependence of the electrical breakdown voltageVc is comparable to that being observed with cell membranes.Vc decreases between 2 and 48°C from 1.5 to 0.6 V in the presence of 1m KCl.

Breakdown experiments were also performed with lipid bilayer membranes composed of other lipids. The fast decay of the voltage (current) in the 100-nsec range after application of a charge pulse was very similar in these experiments compared with experiments with membranes made from oxidized cholesterol. However, the membranes made from other lipids show a mechanical breakdown after the electrical breakdown, whereas with one single membrane from oxidized cholesterol more than twenty reproducible breakdown experiments could be repeated without a visible disturbance of the membrane stability.

The reversible electrical breakdown of the membrane is discussed in terms of both compression of the membrane (electromechanical model) and ion movement through the membrane induced by high electric field strength (Born energy).


Cholesterol Electric Field Strength High Electric Field Fast Decay Lipid Bilayer Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez, O., Latorre, R. 1978. Voltage-dependent capacitance in lipid bilayers made from monolayers.Biophys. J. 21:1Google Scholar
  2. 2.
    Apell, H.-J., Bamberg, E., Alpes, H., Läuger, P. 1977. Formation of ion channels by a negatively charged analog of gramicidin A.J. Membrane Biol. 31:171Google Scholar
  3. 3.
    Benz, R., Fröhlich, O., Läuger, P., Montal, M. 1975. Electrical capacity of black lipid films and of lipid bilayers made from monolayers.Biochim. Biophys. Acta 394:323Google Scholar
  4. 4.
    Benz, R., Fröhlich, O., Läuger, P. 1976. Influence of membrane structure on the kinetics of carrier mediated ion transport through lipid bilayers.Biochim. Biophys. Acta 464:465Google Scholar
  5. 5.
    Benz, R., Gisin, B.F. 1978. Influence of membrane structure on ion transport through lipid bilayer membranes.J. Membrane Biol. 40:293Google Scholar
  6. 6.
    Benz, R., Janko, K. 1976. Voltage-induced capacitance relaxation of lipid bilayer membranes. Effect of membrane composition.Biochim. Biophys. Acta 455:721Google Scholar
  7. 7.
    Benz, R., Läuger, P. 1976. Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique.J. Membrane Biol. 27:171Google Scholar
  8. 8.
    Benz, R., Läuger, P., Janko, K. 1976. Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge pulse relaxation studies.Biochim. Biophys. Acta 455:701Google Scholar
  9. 9.
    Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339Google Scholar
  10. 10.
    Boheim, G., Benz, R. 1978. Charge-pulse relaxation studies with lipid bilayer membranes modified by alamethicin.Biochim. Biophys. Acta 507:262Google Scholar
  11. 11.
    Coster, H.G.L., Zimmermann, U. 1975. The mechanism of electrical breakdown in the membranes ofValonia utricularis.J. Membrane Biol. 22:73Google Scholar
  12. 12.
    Coster, H.G.L., Zimmermann, U. 1975. Dielectric breakdown in the membranes ofValonia utricularis. The role of energy dissipation.Biochim. Biophys. Acta 382:410Google Scholar
  13. 13.
    Crowley, J.M. 1973. Electrical breakdown of bimolecular lipid membranes as an electromechanical instability.Biophys. J. 13:711Google Scholar
  14. 14.
    Feldberg, S.W., Kissel, G. 1975. Charge pulse studies of transport phenomena in bilayer membranes. I. Steady-state measurements of actin- and valinomycin-mediated transport in glycerol monooleate bilayers.J. Membrane Biol. 20:269Google Scholar
  15. 15.
    Feldberg, S.W., Nakadomari, H. 1977. Charge pulse studies of transport phenomena in bilayer membranes. II. Detailed theory of steady-state behavior and application to valinomycin-mediated potassium transport.J. Membrane Biol. 31:81Google Scholar
  16. 16.
    Haydon, D.A. 1970. A critique of the black film as a membrane model.In: Permeability and Function of Biological Membranes. L. Balis, A. Katchalsky, R.D. Keynes, W.R. Loewenstein, and B.A. Pethica, editors. p. 185. North-Holland, AmsterdamGoogle Scholar
  17. 17.
    Hodgkin, A.L., Huxley, A.F. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon ofLoligo.J. Physiol. (London) 116:449Google Scholar
  18. 18.
    Janko, K., Benz, R. 1977. Properties of lipid bilayer membranes made from lipids containing phytanic acid.Biochim. Biophys. Acta 470:8Google Scholar
  19. 19.
    Montal, M., Mueller, P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties.Proc. Nat. Acad. Sci. USA 69:3561Google Scholar
  20. 20.
    Neumcke, B., Walz, D., Läuger, P. 1970. Non linear effects in lipid bilayer membranes. III. The dissociation field effect.Biophys. J. 10:172Google Scholar
  21. 21.
    Onsager, L. 1934. Deviations from Ohm's law in week electrolyts.J. Chem. Phys. 2:599Google Scholar
  22. 22.
    Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane. Solution to four relevant electro-static problems.Nature (London) 221:844Google Scholar
  23. 23.
    Pilwat, G., Zimmermann, U., Riemann, F. 1975. Dielectric breakdown measurements of human and bovine erythrocyte membranes using benzyl-alcohol as a probe molecule.Biochim. Biophys. Acta 406:424Google Scholar
  24. 24.
    Requena, J., Haydon, D.A., Hladky, S.B. 1975. Lenses and the compression of black lipid membranes by an electric field.Biophys. J. 15:77Google Scholar
  25. 25.
    Riemann, F., Zimmermann, U., Pilwat, G. 1975. Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown.Biochim. Biophys. Acta 394:449Google Scholar
  26. 26.
    Singleton, W.S., Gray, M.S., Brown, M.L., White, J.L. 1965. Chromatographically homogeneous lecithin from egg phospholipid.J. Am. Oil Chem. Soc. 42:53Google Scholar
  27. 27.
    Tien, H.T., Carbone, S., Dawidowicz, E.A. 1966. Formation of “black” lipid membranes by oxydation products of cholesterol.Nature (London) 212:718Google Scholar
  28. 28.
    Vienken, J., Jeltsch, E., Zimmermann, U. 1978. Penetration and entrapment of large particles in erythrocytes by electrical breakdown techniques.Cytobiology.17:182Google Scholar
  29. 29.
    White, S.H. 1970. Thickness changes in lipid bilayer membranes.Biochim. Biophys. Acta 196:354Google Scholar
  30. 30.
    White, S.H. 1972. Analysis of the torus surrounding planar lipid bilayer membranes.Biophys. J. 12:432Google Scholar
  31. 31.
    White, S.H. 1974. Comments on “Electrical breakdown of bimolecular lipid membranes as an electromechanical instability”.Biophys. J. 14:155Google Scholar
  32. 32.
    Zimmermann, U. 1973. Transportprozesse durch Biomembranen. Jahresbericht der Kernforschungsanlage, Jülich GmbHGoogle Scholar
  33. 33.
    Zimmermann, U. 1977. Organspezifische Applikation von Pharmaka über zelluläre Trägersysteme.Chem. Labor Betr. 28:505Google Scholar
  34. 34.
    Zimmermann, U. 1977. Cell turgor pressure regulation and turgor pressure-mediated transport processes.In: Integration of Activity in the Higher Plannt. D. Jennings, editor. p. 117. University Press, CambridgeGoogle Scholar
  35. 35.
    Zimmermann, U., Beckers, F., Coster, H.G.L. 1977. The effect of pressure on the electrical breakdown in the membranes ofValonia utricularis.Biochim. Biophys. Acta 464:399Google Scholar
  36. 36.
    Zimmermann, U., Beckers, F., Steudle, E. 1977. Turgor sensing in plant cells by the electromechanical properties of the membrane.In: Transmembrane Ionic Exchanges in Plants. M. Thellier, A. Monnier, M. Demarty, and J. Dainty, editors. No. 258, p. 155. C.N.R.S., ParisGoogle Scholar
  37. 37.
    Zimmermann, U., Pilwat, G. 1976. Organspezifische Applikation von pharmazeutisch aktiven Substanzen über zelluläre Trägersysteme.Z. Naturforsch. 31c:732Google Scholar
  38. 38.
    Zimmermann, U., Pilwat, G., Beckers, F., Riemann, F. 1976. Effects of external electrical fields on cell membranes.Bioelectrochem. Bioenerg. 3:58.Google Scholar
  39. 39.
    Zimmermann, U., Pilwat, G., Esser, B. 1978. The effect on encapsulation in red blood cells on the distribution of methotrexate in mice.J. Clin. Chem. Clin. Biochem. 16:135Google Scholar
  40. 40.
    Zimmermann, U., Pilwat, G., Holzapfel, C., Rosenheck, K. 1976. Electrical hemolysis of human and bovine red blood cells.J. Membrane Biol. 30:135Google Scholar
  41. 41.
    Zimmermann, U., Pilwat, G., Riemann, F. 1974. Dielectric breakdown in cell membranes.In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, editors. p. 146. Springer-Verlag, Berlin-Heidelberg-New YorkGoogle Scholar
  42. 42.
    Zimmermann, U., Pilwat, G., Riemann, F. 1974. Dielectric breakdown in cell membranes.Biophys. J. 14:881Google Scholar
  43. 43.
    Zimmermann, U., Pilwat, G., Riemann, F. 1975. Preparation of erythrocyte ghosts by dielectric breakdown of the cell membrane.Biochim. Biophys. Acta 375:209Google Scholar
  44. 44.
    Zimmermann, U., Riemann, F., Pilwat, G. 1976. Enzyme loading of electrically homogeneous human red blood cell ghosts prepared by dielectric breakdown.Biochim. Biophys. Acta 436:460Google Scholar
  45. 45.
    Zimmermann, U., Schulz, J., Pilwat, G. 1973. Transcellular ion flow inE. coli B and electrical sizing of bacteria.Biophys. J. 13:1005Google Scholar

Copyright information

© Springer-Verlag New York Inc 1979

Authors and Affiliations

  • R. Benz
    • 1
    • 2
  • F. Beckers
    • 1
    • 2
  • U. Zimmermann
    • 1
    • 2
  1. 1.Fachbereich BiologieUniversität KonstanzKonstanzGermany
  2. 2.Institut für Biophysikalische ChemieKernforschungsanlage JülichJülichGermany

Personalised recommendations