Letters in Mathematical Physics

, Volume 34, Issue 3, pp 203–238 | Cite as

Geometry from the spectral point of view

  • Alain Connes
Article

Abstract

In this Letter, we develop geometry from a spectral point of view, the geometric data being encoded by a triple (A. H. D.) of an algebraA represented in a Hilbert spaceH with selfadjoint operatorD. This point of view is dictated by the general framework of noncommutative geometry and allows us to use geometric ideas in many situations beyond Riemannian geometry.

Mathematics Subject Classifications (1991)

46L60 46L80 46L87 19K56 58H15 58A12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Connes, A.:Noncommutative Geometry, Academic Press, New York, 1994.MATHGoogle Scholar
  2. 2.
    Connes, A.: Cyclic cohomology and the transverse fundamental class of a foliation, inGeometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes in Math. 123 Longman, Harlow, 1986, pp. 52–144.Google Scholar
  3. 3.
    Connes, A.: Noncommutative geometry and physics, Les Houches, Preprint IHES M/93/32. 1993.Google Scholar
  4. 4.
    Connes, A. and Lott, J.: Particle models and noncommutative geometry,Nuclear Phys. B 18 (1990), suppl. 29–47 (1991).Google Scholar
  5. 5.
    Connes, A. and Moscovici, H.: Cyclic cohomology, the Novikov conjecture and hyperbolic groups,Topology 29 (1990), 345–388.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Connes, A. and Moscovici, H.: The local index formula in noncommutative geometry. To appear inGAFA.Google Scholar
  7. 7.
    Gilkey, P.:Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem, Math. Lecture Ser. 11, Publish or Perish, Wilmington, Del., 1984.MATHGoogle Scholar
  8. 8.
    Gromov, M.: Groups of polynomial growth and expanding maps,I.H.E.S. Publ. Math. 53 (1981), 53–73.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Seeley, R. T.: Complex powers of elliptic operators, Proc. Symp. Pure Math.10 (1967), 288–307.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Wodzicki, M.: Noncommutative residue, Part 1. Fundamentals, inK-Theory, Arithmetic and Geometry (Moscow, 1984–86), Lecture Notes in Math. 1289. Springer, Berlin, 1987, pp. 320–399.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Alain Connes
    • 1
  1. 1.Analyse et GeometricCollege de FranceParis Cedex 5France

Personalised recommendations