Advertisement

Letters in Mathematical Physics

, Volume 34, Issue 3, pp 183–201 | Cite as

Mathematical theory of nonrelativistic matter and radiation

  • V. Bach
  • J. Fröhlich
  • I. M. Sigal
Article

Abstract

We consider a system of finitely many nonrelativistic electrons bound in an atom or molecule which are coupled to the electromagnetic field via minimal coupling or the dipole approximation. Among a variety or results, we give sufficient conditions for the existence of a ground state (an eigenvalue at the bottom of the spectrum) and resonances (eigenvalues of a complex dilated Hamiltonian) of such a system. We give a brief outline of the proofs of these statements which will appear at full length in a later work.

Mathematics Subject Classifications (1991)

81C12 81E15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguilar, J. and Combes, J. M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians,Comm. Math. Phys. 22 (1971), 269–279.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arai, A.: Spectral analysis of a quantum harmonic oscillator coupled to infinitely many scalar bosons.J. Math. Anal. Appl. 140 (1989), 270–288.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bach, V., Fröhlich, J., and Sigal, I. M.: Mathematical theory of radiation in systems of atoms or molecules, in preparation, 1995.Google Scholar
  4. 4.
    Balslev, E. and Combes, J. M.: Spectral properties of Schrödinger operators with dilatation analytic potentials,Comm. Math. Phys. 22 (1971), 280–294.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bethe, H. A. and Salpeter, E.:Quantum Mechanics of One and Two Electron Atoms, Springer, Heidelberg, 1957.CrossRefzbMATHGoogle Scholar
  6. 6.
    Cohen-Tannoudji, C., Dupont-Roc, J., and Grynberg, G.:Photons and Atoms — Introduction to Quantum Electrodynamics, Wiley. New York, 1991.Google Scholar
  7. 7.
    Cycon, H.: Resonances defined by modified dilations,Helv. Phys. Acta 53 (1985), 969–981.MathSciNetGoogle Scholar
  8. 8.
    Cycon, H., Froese, R., Kirsch, W., and Simon, B.:Schrödinger Operators, Springer, Berlin, Heidelberg, New York, 1987.zbMATHGoogle Scholar
  9. 9.
    Fefferman, C. L.: Stability of coulomb systems in a magnetic field. In preparation, 1995.Google Scholar
  10. 10.
    Fröhlich, J.: On the infrared problem in a model of scalar electrons and massless scalar bosons.Ann. Inst. H. Poincaré 19 (1973), 1–103.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fröhlich, J., Lieb, E. H., and Loss, M.: Stability of Coulomb systems with magnetic fields 1: The one-electron atom,Comm. Math. Phys. 104 (1986), 251–270.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Glimm, J. and Jaffe, A.: The λ(ϕ4)2 quantum field theory without cutoffs: Ii. The field operators and the approximate vacuum.Ann. Math. 91 (1970), 362–401.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hübner, M. and Spohn, H.: Atom interacting with photons: ann-body Schrödinger problem, Preprint, 1994.Google Scholar
  14. 14.
    Hübner, M. and Spohn, H.: Radiative decay: Nonperturbative approaches,Rev. Math. Phys., to be published, 1994.Google Scholar
  15. 15.
    Hunziker, W.: Distortion analyticity and molecular resonance curves,Ann. Inst. H. Poincaré 45 (1986), 339–358.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hunziker, W.: Resonances, metastable states and exponential decay laws in perturbation theory,Comm. Math. Phys. 132 (1990), 177–188.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hunziker, W. and Sigal, I. M.: The general theory ofn-body quantum systems, in J. Feldman et al. (eds),Mathematical Quantum Theory: II. Schrödinger Operators. AMS-Publ., Montreal, 1994.Google Scholar
  18. 18.
    Kato, T.: Smooth operators and commutators.Stud. Math. Appl. 31 (1968), 535–546.MathSciNetzbMATHGoogle Scholar
  19. 19.
    King, C.: Exponential decay near resonance, without analyticity,Lett. Math. Phys. 23 (1991), 215–222.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lavine, R.: Absolute continuity of Hamiltonian operators with repulsive potentials,Proc. Amer. Math. Soc. 22 (1969), 55–60.MathSciNetzbMATHGoogle Scholar
  21. 21.
    Lieb, E. H. and Loss, M.: Stability of Coulomb systems with magnetic fields: II. The many-electron atom and the one-electron molecule,Comm. Math. Phys. 104 (1986), 271–282.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Loss, M. and Yau, H. T.: Stability of Coulomb systems with magnetic fields: III. Zero energy bound states of the Pauli operator,Comm. Math. Phys. 104 (1986), 283–290.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mourre, E.: Absence of singular continuous spectrum for certain self-adjoint operators,Comm. Math. Phys. 78 (1981), 391–408.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Okamoto, T. and Yajima, K.: Complex scaling technique in non-relativistic QED,Ann. Inst. H. Poincaré 42 (1985), 311–327.MathSciNetzbMATHGoogle Scholar
  25. 25.
    Perry, P., Sigal, I. M. and Simon, B.: Spectral analysis ofn-body Schrödinger operators.Annals Math. 114 (1981), 519–567.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Reed, M. and Simon, B.:Methods of Modern Mathematical Physics: Analysis of Operators, vol. 4. Academic Press, San Diego, 1978.zbMATHGoogle Scholar
  27. 27.
    Sigal, I. M.: Complex transformation method and resonances in one-body quantum systems.Ann. Inst. H. Poincaré 41 (1984), 333.MathSciNetzbMATHGoogle Scholar
  28. 28.
    Simon, B.: Resonances inn-body quantum systems with dilation analytic potentials and the foundations of time-dependent perturbation theory,Ann. Math. 97 (1973), 247–274.CrossRefzbMATHGoogle Scholar
  29. 29.
    Simon, B.: The definition of molecular resonance curves by the method of exterior complex scaling.Phys. Lett. A 71 (1979), 211–214.ADSCrossRefGoogle Scholar
  30. 30.
    Spohn, H.: Ground state(s) of the spin-boson Hamiltonian.Comm. Math. Phys. 123 (1989), 277–304.ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • V. Bach
    • 1
  • J. Fröhlich
    • 2
  • I. M. Sigal
    • 3
  1. 1.FB Mathematik MA 7-2Technische Universität BerlinBerlinGermany
  2. 2.Theoretische PhysikETH-HönggerbergZürichSwitzerland
  3. 3.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations