The Journal of Membrane Biology

, Volume 120, Issue 2, pp 131–139

Activation by Ca2+ and block by divalent ions of the K+ channel in the membrane of cytoplasmic drops fromChara australis

  • D. R. Laver
  • N. A. Walker
Articles

Summary

Patch-clamp studies of cytoplasmic drops from the charophyteChara australis have previously revealed K+ channels combining high conductance (170 pS) with high selectivity for K+, which are voltage activated. The cation-selectivity sequence of the channel is shown here to be: K+>Rb+>NH4+≫Na+ and Cl. Divalent cytosolic ions reduce the K+ conductance of this channel and alter its K+ gating in a voltage-dependent manner. The order of blocking potency is Ba2+>Sr2+>Ca2+>Mg2+. The channel is activated by micromolar cytosolic Ca2+, an activation that is found to be only weakly voltage dependent. However, the concentration dependence of calcium activation is quite pronounced, having a Hill coefficient of three, equivalent to three bound Ca2+ needed to open the channel. The possible role of the Ca2+-activated K+ channel in the tonoplast ofChara is discussed.

Key Words

Ca2+-activated K+ channel patch clamp Chara ion block 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P.R., Constanti, A., Brown, D.A., Clark, R.B. 1982. Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones.Nature 296:746–749Google Scholar
  2. Barrett, J.N., Magleby, K.L., Pallotta, B.S. 1982. Properties of single calcium-activated potassium channels in cultured rat muscle.J. Physiol. 331:211–230Google Scholar
  3. Bertl, A. 1989. Current-voltage relationships of a sodium-sensitive potassium channel in the tonoplast ofChara corallina.J. Membrane Biol. 109:9–19Google Scholar
  4. Bertl, A., Gradmann, D. 1987. Current-voltage relationships of potassium channels in the plasmalemma ofAcetabularia.J. Membrane Biol. 99:41–49Google Scholar
  5. Bisson, M., Tyerman, S.D., Findlay, G.P. 1989. Patch clamp studies of ion channels in the membrane of a salt tolerant alga,Chara buckellii.Plant Physiol. 89(Suppl.):45Google Scholar
  6. Blatz, A.L., Magleby, K.L. 1984. Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle.J. Gen. Physiol. 84:1–23Google Scholar
  7. Blatz, A.L., Magleby, K.L. 1987. Calcium-activated potassium channels.Trends Neurosci. 10:463–467Google Scholar
  8. Coyaud, L., Kurkjian, A., Kado, R., Hedrich, R. 1987. Ion channels and ATP-driven pumps involved in ion transport across the tonoplast of sugarbeet vacuoles.Biochim. Biophys. Acta 902:263–268Google Scholar
  9. Findlay, G.P. 1970. Membrane electrical behaviour inNitellopsis obtusa.Aust. J. Biol. Sci. 23:1033–1045Google Scholar
  10. Findlay, G.P., Hope, A.B. 1964. Ionic relations of cells ofChara australis. VII. The separate characteristics of the plasmalemma and tonoplast.Aust. J. Biol. Sci. 17:62–77Google Scholar
  11. Hedrich, R., Barbier-Brygoo, H., Felle, H., Flügge, U. I., Lüttge, U., Maathuis, F.J.M., Marx, S., Prins, H.B.A., Raschke, K., Schnabl, H., Schroeder, J.I., Struve, I., Taiz, L., Ziegler, P. 1988. General mechanisms for solute transport across the tonoplast of plant vacuoles: A patch-clamp survey of ion channels and proton pumps.Bot. Acta 101:7–13Google Scholar
  12. Hedrich, R., Neher, E. 1987. Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles.Nature 329:833–836Google Scholar
  13. Kamiya, N., Kuroda, K. 1957. Cell operation inNitella: I. Cell amputation and effusion of the endoplasm.Proc. Jpn. Acad. 33:149–152Google Scholar
  14. Katsuhara, M., Mimura, T., Tazawa, M. 1989. Patch-clamp study on a Ca2+-regulated K+ channel in the tonoplast of the brackish characeaeLamprothamnium succintum.Plant Cell Physiol. 30:549–555Google Scholar
  15. Kikuyama, M. 1986. Tonoplast action potential in characeae.Plant Cell Physiol. 27:1461–1468Google Scholar
  16. Kikuyama, M., Tazawa, M. 1976. Tonoplast action potential inNitella in relation to vacuolar chloride concentration.J. Membrane Biol. 29:95–110Google Scholar
  17. Kiyosawa, K., Okihara, K. 1988. Osmotic and ionic regulation inChara L-cell fragments.Plant Cell Physiol. 29:9–19Google Scholar
  18. Kolb, H.-A., Köhler, K., Martinoia, E. 1987. Single potassium channels in membranes of isolated mesophyll barley vacuoles.J. Membrane Biol. 95:163–169Google Scholar
  19. Latorre, R. 1986. The large calcium-activated potassium channel.In: Ion Channel Reconstitution C. Miller, editor. Chap. 17. pp. 431–463. Plenum, New YorkGoogle Scholar
  20. Latorre, R., Miller C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–30Google Scholar
  21. Latorre, R., Oberhasuer, A., Labarca, P., Alvarez, O. 1989. Varieties of calcium-activated potassium channels.Annu. Rev. Physiol. 51:385–399Google Scholar
  22. Laver, D.R. 1990. Coupling of K+ gating and permeation with Ca2+ block in the Ca2+-activated K+ channel inChara australis.J. Membrane Biol. 118:55–67Google Scholar
  23. Laver, D.R., Fairley, K.A., Walker, N.A. 1989. Ion permeation in a K+ channel inChara australis: Direct evidence for diffusion limitation of ion flow in a maxi-K channel.J. Membrane Biol. 108:153–164Google Scholar
  24. Laver, D.R., Walker, N.A. 1987. Steady-state voltage-dependent gating and conduction kinetics of single K+ channels in the membrane of cytoplasmic drops ofChara australis.J. Membrane Biol. 100:31–42Google Scholar
  25. Lühring H. 1986. Recording of single K+ channels in the membrane of cytoplasmic drop ofChara australis.Protoplasma 133:19–27Google Scholar
  26. Magleby, K.L., Pallotta, B.S. 1983a. Burst kinetics of single calcium-activated potassium channels in cultured rat muscle.J. Physiol. 344:605–623Google Scholar
  27. Magleby, K.L., Pallotta, B.S. 1983b. Calcium dependence of open and shut distributions from calcium-activated potassium channels in cultured rat muscle.J. Physiol. 344:585–604Google Scholar
  28. Martell, A.E., Smith, R.M. (editors) 1974. Critical Stability Constants. Vol. 1. Plenum, New YorkGoogle Scholar
  29. Marty, A. 1983. Ca2+-dependent K+ channels with large unity conductance.Trends Neurosci. 6:262–265Google Scholar
  30. Moczydlowski, E., Latorre, R. 1983. Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers: Evidence for two voltage-dependent Ca2+ binding reactions.J. Gen. Physiol. 82:511–541Google Scholar
  31. Oberhauser, A., Alvarez, O., Latorre, R. 1988. Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane.J. Gen. Physiol. 92:67–86Google Scholar
  32. Okihara, K., Kiyosawa, K. 1988. Ion composition of theChara internode.Plant Cell Physiol. 29:21–25Google Scholar
  33. Perrin, D.D., Sayce, I.G. 1967. Computer calculation of equilibrium concentrations in mixtures of metal ions and complexing species.Talanta 14:833–842Google Scholar
  34. Sakano, K., Tazawa, M. 1986. Tonoplast origin of the membrane of cytoplasmic droplets prepared fromChara internodal cells.Protoplasma 131:247–249Google Scholar
  35. Schroeder, J.I. 1988. K+ transport properties of K+ channels in the plasma membranes ofVicia faba guard cells.J. Gen. Physiol. 92:667–683Google Scholar
  36. Shimmen, T., Nishikawa, S.-I. 1988. Studies on the tonoplast action potential ofNitella flexilis.J. Membrane Biol. 101:133–140Google Scholar
  37. Stoeckel, H., Takeda, K. 1989. Calcium-activated, voltage-dependent, non-selective cation currents in endosperm plasma membrane from higher plants.Proc. R. Soc. London B 237:213–231Google Scholar
  38. Tester, M. 1988. Blockade of potassium channels in the plasmalemma ofChara corallina by tetraethylammonium, Ba2+, Na+ and Cs+.J. Membrane Biol. 105:77–85Google Scholar
  39. Tester, M. 1990. Plant ion channels: Whole-cells and single channels studies.New Phytol. 114:305–340Google Scholar
  40. Tyerman, S.D., Findlay, G.P., Terry, B.R. 1989. Behaviour of K+ and Cl channels in the cytoplasmic drop membrane ofChara corallina using a transient detection method of analysing single-channel recordings.In: Plant Membrane Transport: The Current Position. J. Dainty, M.I. De Michelis, E. Marre, F. Rasi-Caldogno, editors. pp. 173–178. Elsevier, AmsterdamGoogle Scholar
  41. Vergara, C., Latorre, R. 1983. Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar bilayers: Evidence for a Ca2+ and Ba2+ blockade.J. Gen. Physiol. 82:543–568Google Scholar
  42. Woodhull, A.M. 1973. Ionic blockage of sodium channels in nerve.J. Gen. Physiol. 61:687–708Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • D. R. Laver
    • 1
  • N. A. Walker
    • 1
  1. 1.School of Biological SciencesThe University of SydneySydneyAustralia

Personalised recommendations