The Journal of Membrane Biology

, Volume 107, Issue 3, pp 277–286 | Cite as

Integral and peripheral protein composition of the apical and basolateral membrane domains in MDCK cells

  • Massimo Sargiacomo
  • Michael Lisanti
  • Lutz Graeve
  • Andre Le Bivic
  • Enrique Rodriguez-Boulan


Selective biotinylation of the apical or basolateral domains of confluent MDCK monolayers grown on polycarbonate filters with a water soluble biotin analog, sulfo-NHS-biotin, was employed to reveal strikingly distinct patterns of endogenous “peripheral” and “integral” membrane proteins. “Peripheral” proteins were found to be approximately fivefold more abundant with this procedure than “integral” membrane proteins, both on the apical and on the basolateral surface. The distinct apical and basal patterns were shown to depend upon the integrity of the monolayer; when the tight junctions were disrupted by preincubation in calcium-depleted medium, the patterns appeared practically indistinguishable. Two-dimensional gel electrophoresis demonstrated that only a very small percentage of the biotinylated proteins were found in similar amounts on both apical and basolateral domains. These results indicate that the sorting mechanisms that segregate apical and basolateral epithelial proteins are very strict. The simple procedure described here has clear advantages over other methods available to label apical and basal epithelial surface domains, namely, higher accessibility of the biotin probe to the basolateral membrane, possibility of purifying biotinylated proteins via immobilized streptavidin and minimal exposure of the researcher to isotopes. It should be very useful in characterizing the apical and basolateral protein compositions of other epithelial cells and in studies on the development of epithelial cell polarity.

Key Words

epithelial cells cell polarity plasma membrane proteins sulfo-NHS-biotin streptavidin Triton X-114 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almers, W., Stirling, C. 1984. Distribution of transport proteins over animal cell membranes.J. Membrane Biol. 77:169–186Google Scholar
  2. 2.
    Anderson, D.J., Blobel, G. 1979. Immunoprecipitation of proteins from cell-free translations.Methods Enzymol. 254:111–121Google Scholar
  3. 3.
    Balcarova-Standler, J., Pfeiffer, S.E., Fuller, S.D., Simons, K. 1984. Development of cell surface polarity in the epithelial Madin Darby canine Kidney (MDCK) cell line.EMBO J. 3:2687–2694Google Scholar
  4. 4.
    Birk, H., Koepsell, H. 1987. Reaction of monoclonal antibodies with plasma membrane proteins after binding on nitrocellulose: Renaturation of antigenic sites and reduction of nonspecific antibody binding.Anal. Biochem. 164:12–22Google Scholar
  5. 5.
    Bordier, C. 1981. Phase separation of integral membrane proteins in Triton X-114 solution.J. Biol. Chem. 256:1604–1607Google Scholar
  6. 6.
    Caplan, M.J., Anderson, H.C., Palade, G.E., Jamieson, J.D. 1986. Intracellular sorting and polarized cell surface delivery of (Na+, K+) ATPase, an endogenous component of MDCK cell basolateral plasma membranes.Cell 46:623–631Google Scholar
  7. 7.
    Cereijido, M., Ehrenfeld, J., Meza, I., Martinez-Palomo, A. 1980. Structural and functional membrane polarity in cultured monolayers of MDCK cells.J. membrane Biol. 52:147–159Google Scholar
  8. 8.
    Cereijido, M., Robbins, E.S., Dolan, W.J., Rotunno, A., Sabatini, D. 1978. Polarized monolayers formed by epithelial cells on a permeable and translucent support.J. Cell. Biol. 77:853–880Google Scholar
  9. 9.
    Conzelmann, A., Spiazzi, A., Hyman, R., Bion, C. 1986. Anchoring of membrane proteins via phosphatidylinositol is deficient in two classes of Thy-1 negative mutant lymphoma cells.EMBO J. 5:3291–3296Google Scholar
  10. 10.
    Fujita, M., Kawai, K., Asano, S., Nakao, N. 1973. Protein components of two different regions of an intestinal epithelial cell plasma membrane.Biochim. Biophys. Acta 307:141–151Google Scholar
  11. 11.
    Fuller, S.D., Bonsdorff, C.H. von, Simons, K. 1984. Vesicular stomatitis virus infects and matures only through the basolateral surface of the polarized epithelial cell line.Cell 38:65–77Google Scholar
  12. 12.
    Griffiths, G., Pfeiffer, S., Simons, K., Matlin, K. 1985. Exit of newly synthesized membrane proteins from the trans cisterna of the Golgi complex to the plasma membrane.J. Cell Biol. 101:949–964Google Scholar
  13. 13.
    Handler, J.S., Perkins, F.M., Johnson, J.P. 1980. Studies of renal function using cell culture techniques.Am. J. Physiol. 238:F1-F9Google Scholar
  14. 14.
    Herzlinger, D.A., Ojakian, G.K. 1984. Studies on the development and maintenance of epithelial cell surface polarity with monoclonal antibodies.J. Cell Biol. 98:1777–1787Google Scholar
  15. 15.
    Hurley, W.L., Finkelstein, E., Holst, B.D. 1985. Identification of surface proteins on bovine leukocytes by a biotin-avidin protein blotting technique.J. Immunol. Methods 85:195–202Google Scholar
  16. 16.
    Ingalls, H.M., Goodloe-Holland, C.M., Luna, E.J. 1986. Junctional plasma membrane domains isolated from aggregatingDictyostelium discoideum amebae.Proc. Natl. Acad. Sci. USA 83:4779–4783Google Scholar
  17. 17.
    Kenny, A.J., Maroux, S. 1982. Topology of microvillar membrane hydrolases of kidney and intestine.Physiol. Rev. 62:91–128Google Scholar
  18. 18.
    Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of Bacteriophage T4.Nature (London) 227:680–685Google Scholar
  19. 19.
    Meer, G. van, Gumbiner, B., Simon, K. 1986. The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next.Nature (London) 322:639–641Google Scholar
  20. 20.
    Meer, G. van, Simons, K. 1986. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells.EMBO J. 5:1455–1464Google Scholar
  21. 21.
    Meer, G. van, Stelzer, E.H.K., Wijnaendts-van Resandt, R.W., Simons, K. 1987. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells.J. Cell Biol. 105:1623–1635Google Scholar
  22. 22.
    Misek, D.E., Bard, E., Rodriguez-Boulan, E. 1984. Biogenesis of epithelial cell polarity: Intracellular sorting and vectorial exocytosis of an apical plasma membrane glycoprotein.Cell 39:537–546Google Scholar
  23. 23.
    Misfeldt, D.S., Hamamoto, S.T., Pitelka, D.R. 1976. Transepithelial transport in cell culture.Proc. Natl. Acad. Sci. USA 73:1212–1216Google Scholar
  24. 24.
    Murer, H., Kinne, R. 1980. The use of isolated membrane vesicles to study epithelial transport process.J. Membrane Biol. 55:81–95Google Scholar
  25. 25.
    Nichols, G.E., Shiraishi, T., Allietta, M., Tillack, T.W., Young, W.W. 1987. Polarity of the Forssman glycolipid in MDCK epithelial cells.Biochim. Biophys. Acta 930:154–166Google Scholar
  26. 26.
    O'Farrell, P.H. 1975. High resolution two-dimensional electrophoresis of proteins.J. Biol. Chem. 250:4007–4021Google Scholar
  27. 27.
    Ojakian, G.K., Romain, R.E., Herz, R.E. 1987. A distal nephron glycoprotein that has different cell surface distributions in MDCK cell sublines.Am. J. Physiol. 253:C433-C443Google Scholar
  28. 28.
    Pryde, J.G. 1986. Triton X-114: A detergent that has come in from the cold.Trends Biol. Sci. 11:160–163Google Scholar
  29. 29.
    Richardson, J.C.W., Simmons, N.L. 1979. Demonstration of protein asymmetries in the plasma membrane of cultured renal (MDCK) epithelial cells by lactoperoxidase-mediated iodination.FEBS Lett. 105:201–204Google Scholar
  30. 30.
    Rodriguez-Boulan, E. 1983. Membrane biogenesis, enveloped RNA viruses and epithelial polarity.Mod. Cell Biol. 1:119–170Google Scholar
  31. 31.
    Rodriguez-Boulan, E. 1983. Polarized budding of viruses from epithelial cells.Methods Enzymol. 98:486–501Google Scholar
  32. 32.
    Rodriguez-Boulan, E., Pendergast, M. 1980. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells.Cells 20:45–54Google Scholar
  33. 33.
    Rodriguez-Boulan, E., Sabatini, D. 1978. Asymmetric budding of viruses in epithelial monolayers: A model system for study of epithelial polarity.Proc. Natl. Acad. Sci. USA 75:5071–5075Google Scholar
  34. 34.
    Sabanero, M., Gonzalez-Robles, A., Meza, I. 1985. Characterization of a 36,000-dalton protein from the surface of Madin-Darby canine kidney cells involved in cell attachment and spreading.J. Cell Biol. 92:1–22Google Scholar
  35. 35.
    Salas, P.J., Misek, D.E., Vega-Salas, D.E., Gundersen, D., Cereijido, M., Rodriguez-Boulan, E. 1986. Microtubules and actin filaments are not critically involved in the biogenesis of epithelial cell surface polarity.J. Cell Biol. 102:1853–1867Google Scholar
  36. 36.
    Sambuy, Y., Rodriguez-Boulan, E. 1988. Isolation and characterization of the apical surface of polarized Madin-Darby canine kidney epithelial cells.Proc. Natl. Acad. Sci. USA 85:1529–1533Google Scholar
  37. 37.
    Sargiacomo, M., Graeve, L., Rodriguez-Boulan, E. 1987. A water-soluble biotin reagent as a tool for labeling polarized MDCK plasma membrane proteins.J. Cell Biol. 105:302a (Abstr)Google Scholar
  38. 38.
    Simons, K., Fuller, S.D. 1985. Cell surface polarity in epithelia.Annu. Rev. Cell Biol. 1:243–288Google Scholar
  39. 39.
    Towbin, H., Staehelin, T., Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.Proc. Natl. Acad. Sci. USA 76:4350–4354Google Scholar
  40. 40.
    Turner, R.J., Thompson, J., Sariban-Sohraby, S., Handler, J.S. 1985. Monoclonal antibodies as probes of epithelial membrane polarization.J. Cell Biol. 101:2173–2180Google Scholar
  41. 41.
    Vega-Salas, D.E., Salas, P.J.I., Rodriguez-Boulan, E. 1987. Formation of the apical pole of epithelial (Madin-Darby canine kidney) cell: Polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell-cell interactions.J. Cell Biol. 104:905–916Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Massimo Sargiacomo
    • 1
  • Michael Lisanti
    • 1
  • Lutz Graeve
    • 1
  • Andre Le Bivic
    • 1
  • Enrique Rodriguez-Boulan
    • 1
  1. 1.Department of Cell BiologyCornell University Medical CollegeNew York

Personalised recommendations