Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Activation and conductance properties of ryanodine-sensitive calcium channels from brain microsomal membranes incorporated into planar lipid bilayers

  • 62 Accesses

  • 110 Citations

Summary

Rat brain microsomal membranes were found to contain high-affinity binding sites for the alkaloid ryanodine (k d 3nm.B max 0.6 pmol per mg protein). Exposure of planar lipid bilayers to microsomal membrane vesicles resulted in the incorporation, apparently by bilayer-vesicle fusion, of at least two types of ion channel. These were selective for Cl and Ca2+, respectively. The reconstituted Ca2+ channels were functionally modified by 1 μm ryanodine, which induced a nearly permanently open subconductance state. Unmodified Ca2+ channels had a slope conductance of almost 100 pS in 54mm CaHEPES and a Ca2+/TRIS+ permeability ratio of 11.0. They also conducted other divalent cations (Ba2+>Ca2+>Sr2+>Mg2+) and were markedly activated by ATP and its nonhydrolysable derivative AMPPCP (1mm). Inositol 1,4,5-trisphosphate (1–10 μm) partially activated the same channels by increasing their opening rate. Brain microsomes therefore contain ryanodine-sensitive Ca2+ channels, sharing some of the characteristics of Ca2+ channels from striated but not smooth muscle sarcoplasmic reticulum. Evidence is presented to suggest they were incorporated into bilayers following the fusion of endoplasmic reticulum membrane vesicles, and their sensitivity to inositol trisphosphate may be consistent with a role in Ca2+ release from internal membrane stores.

This is a preview of subscription content, log in to check access.

References

  1. Berridge, M.J., Irvine, R.F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction.Nature (London) 312:315–321

  2. Blaustein, M.P., Ratzleff, R.W., Schweitzer, E.S. 1978. Calcium buffering in pre-synaptic nerve terminals.J. Gen. Physiol. 72:43–66

  3. Costantin, L.L. 1975. Contractile activation in striated muscle.Prog. Biophys. Mol. Biol. 29:197–224

  4. Cotman, C.W. 1974. Isolation of synaptosomal and synaptic plasma membrane fractions.Meth. Enzymol. 31A:445–452

  5. Dawson, A.P. 1985. GTP enhances inositol trisphosphate-stimulated Ca2+ release from rat liver microsomes.FEBS Lett. 185:147–150

  6. Engel, A., Massalski, A., Schindler, H., Dorset, D.L., Rosenbusch, J.P. 1985. Porin channel triplets merge into single outlets inEscherichia coli outer membranes.Nature (London) 317:643–645

  7. Erlich, B.E., Watras, J. 1988. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sacroplasmic reticulum.Nature (London) 336:583–586

  8. Farley, J., Rudy, B. 1988. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.Biophys. J. 53:919–934

  9. Fatt, P., Ginsborg, B.L. 1958. The ionic requirements for the production of action potentials in crustacean muscle fibres.J. Physiol. (London) 142:516–543

  10. Fill, M., Coronado, R. 1988. Ryanodine receptor channel of sarcoplasmic reticulum.Trends Neurosci. 11:453–457

  11. Gill, D.E., Ueda, T., Chueh, S.-H., Noel, M.W. 1986. Ca2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism.Nature (London) 320:461–464

  12. Gray, E.G., Whittaker, V.P. 1962. The isolation of nerve-endings from brain: An EM study of cell fragments derived by homogenisation and centrifugation.J. Anat. 96:79–87

  13. Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer, Sunderland, MA

  14. Katz, B. 1969. The Release of Neural Transmitter Substances. The Sherrington Lectures, vol. X. Liverpool University Press, Liverpool

  15. Kuno, M., Gardner, P. 1987. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes.Nature (London) 326:301–304

  16. Lai, F.A., Erickson, H.P., Rousseau, E., Liu, Q.-Y., Meissner, G. 1988. Purification and reconstitution of the calcium release channel from skeletal muscle.Nature (London) 331:315–319

  17. Lansman, J.B., Hess, P., Tsien, R.W. 1986. Blockade of current through single calcium channels by Cd+, Mg+ and Ca2+.J. Gen. Physiol. 88:321–347

  18. Lowry, O.H., Rosebrough, N.J., Farr, D.L., Randall, R.J. 1951. Protein measurements with the Folin-phenol reagent.J. Biol. Chem. 193:265–275

  19. Ma, J., Fill, M., Knudson, C.M., Campbell, K.P., Coronado, R. 1988. Ryanodine receptor of skeletal muscle is a gap-junction type channel.Science 242:99–102

  20. Mannella, C.A., Colombini, M., Frank, J. 1983. Structural and functional evidence for multiple channel complexes in the outer membrane ofNeurospora crassa mitochondria.Proc. Natl. Acad. Sci. USA 80:2243–2247

  21. Meldolesi, J., Pompeo, V., Pozzan, T. 1988. The intracellular distribution of calcium.Trends Neurosci. 11:449–452

  22. Meyer, T., Holowka, D., Stryer, L. 1988. Highly-cooperative opening of calcium channels by inositol 1,4,5-trisphosphate.Science 240:653–656

  23. Miller, C. (editor) 1986. Ion Channel Reconstitution. Plenum, New York

  24. Miller, C., Rosenberg, R.L. 1979. A voltage-gated cation conductance from frog sarcoplasmic reticulum. Effect of transition metal ions.Biochemistry 18:1138–1145

  25. Morris, A.P., Gallacher, D.V., Irvine, R.F., Petersen, O.H. 1987. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels.Nature (London) 330:653–655

  26. Nelson, M.T., French, R.J., Krueger, B.K. 1984. Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers.Nature (London) 308:77–79

  27. Nishizuka, Y. 1984. Turnover of inositol phospholipids and signal transduction.Science 225:1365–1370

  28. Parker, I., Miledi, R. 1987. Injection of 1,3,4,5-tetrakisphosphate intoXenopus oocytes generates a chloride current dependent upon intracellular calcium.Proc. R. Soc. London B 232:59–70

  29. Pollard, H.B., Tack-Goldman, K., Pazoles, C.J., Cruetz, C.E., Shulman, N.R. 1977. Evidence for control of serotonin secretion from human platelets by hydroxyl ion transport and osmotic lysis.Proc. Natl. Acad. Sci. USA 74:5295–5299

  30. Putney, J.R. 1986. A model for receptor-regulated calcium entry.Cell Ca 7:1–12

  31. Rousseau, E., Smith, J.S., Henderson, J.S., Meissner, G. 1986. Single channel and45Ca2+ flux measurements of the cardiac sarcoplasmic reticulum calcium channel.Biophys. J. 50:1009–1014

  32. Rousseau, E., Smith, J.S., Meissner, G. 1987. Ryanodine modifies conductance and gating behaviour of single Ca2+ release chennel.Am. J. Physiol. 253:C364-C368

  33. Smith, J.S., Coronado, R., Meissner, G. 1985. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels.Nature (London) 316:446–449

  34. Smith, J.S., Coronado, R., Meissner, G. 1986. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+.J. Gen. Physiol. 88:573–588

  35. Smith, J.S., Imagawa, T., Ma, J., Fill, M., Campbell, K.P., Coronado, R. 1988. Purified ryanodine receptor from rabbit skeletal muscle is the calcium release channel of sarcoplasmic reticulum.J. Gen. Physiol. 92:1–26

  36. Stanley, E.F., Ehrenstein, G., Russel, J.T. 1988. Evidence for anion channels in secretary vesicles.Neuroscience 25:1035–1039

  37. Streb, H., Irvine, R.F., Berridge, M.J., Shulz, I. 1983. Release of Ca2+ from a nonmitochondrial store in pancreatic acinar cells by inositol-1,4,5-trisphosphate.Nature (London) 306:67–69

  38. Suarez-Isla, B.A., Irribarra, V., Oberhauser, A., Larralde, L., Bull, R., Hidalgo, C., Jaimovich, E. 1988. Inositol (1,4,5)-trisphosphate activates a calcium channel in isolated sarcoplasmic reticulum membranes.Biophys. J. 54:737–741

  39. Sutko, J.L., Willerson, J.T., Templeton, G.M., Jones, L.R., Besch, H.R. 1979. Ryanodine: its alteration of cat papillary muscle contractile state and responsiveness to inotropic intervention and a suggested mechanism of action.J. Pharmacol. Expt. Ther. 209:37–47

  40. Tanifuji, M., Sokabe, M., Kasai, M. 1987. An anion channel of sarcoplasmis reticulum incorporated into planar bilayers: Single-channel behavior and conductance properties.J. Membrane Biol. 99:103–111

  41. Toro, L., Dettbarn, C., Palade, P., Stefani, E. 1989. Calcium uptake, caffeine-induced calcium release and ryanodine binding of isolated uterine smooth muscle S.R.Biophys. J. 55:477a

  42. Vassilev, P.M., Kanazirska, M.P., Tien, H.T. 1987. Ca2+ channels from brain microsomal membranes reconstituted in patch-clamp bilayers.Biochim. Biophys. Acta 897:324–330

  43. Woodbury, D.J., Hall, J.E. 1988. Role of channels in the fusion of vesicles with a planar bilayer.Biophys. J. 54:1053–1063

  44. Zampighi, G.A., Hall, J.E., Kreman, M. 1985. Purified lens junctional protein forms channels in planar lipid films.Proc. Natl. Acad. Sci. USA 82:8468–8472

  45. Zschauer, A., van Breemen, C., Buhler, F.R., Nelson, M.T. 1988. Calcium channels in thrombin-activated human platelet membrane.Nature (London) 334:703–705

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ashley, R.H. Activation and conductance properties of ryanodine-sensitive calcium channels from brain microsomal membranes incorporated into planar lipid bilayers. J. Membrain Biol. 111, 179–189 (1989). https://doi.org/10.1007/BF01871781

Download citation

Key Words

  • ATP
  • calcium channel
  • endoplasmic reticulum
  • inositol trisphosphate
  • microsomes
  • planar bilayers
  • ryanodine