Skip to main content
Log in

Loss of epithelial polarity: A novel hypothesis for reduced proximal tubule Na+ transport following ischemic injury

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Ischemia results in the marked reduction of renal proximal tubule function which is manifested by decreased Na+ and H2O reabsorption. In the present studies the possibility that altered Na+ and H2O reabsorption were due to ischemia-induced loss of surface membrane polarity was investigated. Following 15 min of renal ischemia and 2 hr of reperfusion, proximal tubule cellular ultrastructure was normal. However, abnormal redistribution of NaK-ATPase to the apical membrane domain was observed and large alterations in apical membrane lipid composition consistent with loss of surface membrane polarity were noted. These changes were associated with large decreases in Na+ (37.4vs. 23.0%,P<0.01) and H2O (48.6vs. 36.9%,P<0.01) reabsorption at a time when cellular morphology, apical Na+ permeability, Na+-coupled cotransport, intracellular pH and single nephron filtration rates were normal. We propose that the abnormal redistribution of NaK-ATPase to the apical membrane domain is in part responsible for reduced Na+ and H2O reabsorption following ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackerman, J.J.H., Lowry, M., Radda, G.K., Ross, R.D., Wong, G.G. 1981. The role of intracellular pH in regulation of amniogenesis:31P NMR studies of the isolated perfused rat kidney.J. Physiol. (London) 319:65–73

    Google Scholar 

  2. Aronson, P.S., Boundso, S.E. 1980. Harmaline inhibition of Na-dependent transport in renal microvillus membrane vesicles.Am. J. Physiol. 238:F210-F217

    Google Scholar 

  3. Chan, L., Waterton, J.C., Radda, G.K. 1981. Study of rat kidney in vivo during hypovolemic shock by P-31 NMR.Biochem. Soc. Trans. 9:239–241

    Google Scholar 

  4. Conger, J.D., Bartoli, E., Earley, L.E. 1976. A study in vivo of peritubular oncotic pressure and proximal tubular reabsorption in the rat.Clin. Sci. Mol. Med. 51:379–392

    PubMed  Google Scholar 

  5. Conger, J.D., Falk, S.A. 1977. Intrarenal dynamics in the pathogenesis and prevention of acute urate nephropathy.J. Clin. Invest. 59:786–793

    PubMed  Google Scholar 

  6. Donohoe, F.F., Venkatachalam, M.A., Bernard, D.B., Levinsky, N.G. 1978. Tubular leakage and obstruction after renal ischemia: Structural-functional correlations.Kidney Int. 13:208–222

    PubMed  Google Scholar 

  7. Glaumann, B., Glaumann, H., Berezesky, I.K., Trump, B.F. 1977. Studies on cellular recovery from injury. II. Ultrastructural studies on the recovery of the Pars Convolute of the proximal tubule of the rat kidney from temporary ischemia.Virchows Arch. B. Cell Pathol. 24:1–18

    PubMed  Google Scholar 

  8. Hanely, M.J. 1980. Isolated nephron segments in a rabbit model of ischemic acute renal failure.Am. J. Physiol. 239:F17-F23

    PubMed  Google Scholar 

  9. Herminghuysen, D., Welbourne, C.J., Welbourne, T.C. 1985. Renal sodium reabsorption, oxygen consumption, and glutamyltransferase excretion in the postischemic rat kidney.Am. J. Physiol. 248:F804-F809

    PubMed  Google Scholar 

  10. Hruska, K.A., Mills, S.C., Khalifa, S., Hammerman, M.R. 1983. Phosphorylation of renal brush border membrane vesicles: Effect on calcium uptake and membrane content of polyphosphoinositides.J. Biol. Chem. 258:2501–2507

    PubMed  Google Scholar 

  11. Imhof, B.A., Vollmers, V.P., Goodman, S.L., Birchmeier, W. 1983. Cell-cell interaction and polarity of epithelial cells: Specific perturbation using a monoclonal antibody.Cell 35:667–675

    PubMed  Google Scholar 

  12. Ives, H.E., Yee, J., Warnock, D.G. 1983. Asymmetric distribution of the Na+/H antiport in the renal proximal tubule epithelial cell.J. Biol. Chem. 258:13513–13516

    PubMed  Google Scholar 

  13. Jesaitis, A.J., Yguerabide, J. 1986. The lateral mobility of the (Na+, K+)-dependent ATPase in Madin-Darby canine kidney cells.J. Cell Biol. 102:1256–1263

    PubMed  Google Scholar 

  14. Jonston, P.A., Rennke, H., Levinsky, N.G. 1984. Recovery of proximal tubule function from ischemia.Am. J. Physiol. 246:F159-F166

    Google Scholar 

  15. Mason, J., Beck, F., Dorge, A., Rick, R., Thurau, K. 1981. Intracellular electrolyte composition following renal ischemia.Kidney Int. 20:61–70

    Google Scholar 

  16. Molitoris, B.A., Hoilien, C.A., Dahl, R., Ahnen, D.J., Wilson, P.D., Kim, J. 1988. Characterization of ischemia-induced loss of epithelial polarity.J. Membrane Biol. 106:233–242

    Google Scholar 

  17. Molitoris, B.A., Kinne, R. 1987. Ischemia induces surface membrane dysfunction: Mechanism of altered Na+-dependent glucose transport.J. Clin Invest. (in Press)

  18. Molitoris, B.A., Simon, F.R. 1985. Renal cortical brush border and basolateral membranes: Cholesterol and phospholipid composition and relative turnover.J. Membrane Biol. 83:207–215

    Article  Google Scholar 

  19. Molitoris, B.A., Wilson, P.D., Schrier, R.W., Simon, F.R. 1985. Ischemia induces partial loss of surface membrane polarity and accumulation of putative calcium ionophores.J. Clin. Invest. 76:2097–2105

    PubMed  Google Scholar 

  20. Rabito, C.A., Kreisberg, J.I., Wright, D. 1984. Alkaline phosphatase and glutamyl transpeptidase as polarization markers during the organization of LLC-PK, cells into an epithelial membrane.J. Biol. Chem. 259:574–582

    Google Scholar 

  21. Reimer, K.A., Ganote, C.E., Jennings, R.B. 1972. Alterations in renal cortex following ischemic injury: III. Ultrastructure of proximal tubules after ischemia or autolysis.Lab. Invest. 26:347–363

    PubMed  Google Scholar 

  22. Sehr, P., Bore, P., Papatheofanis, J., Raddada, G. 1979. Nondestructive measurements of metabolites and tissue pH in the kideny by 31p nuclear magnetic resonance.Br. J. Exp. Pathol. 60:632–641

    PubMed  Google Scholar 

  23. Shapiro, J.I., Chan, L. 1987.In vivo determinations of absolute molar concentrations of renal phosphorus metabolites using the proton concentration as an internal standard.J. Magn. Reson. 75:125–128

    Google Scholar 

  24. Simons, K., Fuller, S.D. 1985. Cell surface polarity in epithelia.Annu. Rev. Cell. Biol. 1:243–288

    PubMed  Google Scholar 

  25. Spiegel, D.M., Wilson, P.D., Molitoris, B.A. 1988. Epithelial polarity following ischemia: A requirement for normal cell function.Am. J. Physiol. (in press)

  26. Taylor, Z., Emmanouel, D.S., Katz, A.I. 1982. Insulin binding and degradation by luminal and basolateral membranes from rabbit kidney.J. Clin. Invest. 69:1136–1146

    PubMed  Google Scholar 

  27. Thulborn, K.R., Ackerman, J.H.H. 1983. Absolute molar concentrations by NMR in homogeneous B1: A scheme for analysis ofin vivo metabolites.J. Magn. Reson. 55:357–371

    Google Scholar 

  28. Venkatachalam, M.A., Jones, D.B., Rennke, H.G. 1981. Mechanism of proximal tubule brush border loss and regeneration following mild renal ischemia.Lab. Invest. 45:355–365

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molitoris, B.A., Chan, L.K., Shapiro, J.I. et al. Loss of epithelial polarity: A novel hypothesis for reduced proximal tubule Na+ transport following ischemic injury. J. Membrain Biol. 107, 119–127 (1989). https://doi.org/10.1007/BF01871717

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871717

Key Words

Navigation