Advertisement

The Journal of Membrane Biology

, Volume 116, Issue 1, pp 31–39 | Cite as

Nature of the water channels in the internodal cells ofNitellopsis

  • Randy Wayne
  • Masashi Tazawa
Articles

Summary

The hydraulic resistance was measured on internodal cells ofNitellopsis obtusa using the method of transcellular osmosis. The hydraulic resistance was approximately 2.65 pm−1 sec Pa, which corresponds to an osmotic permeability of 101.75 μm sec−1 (at 20°C).p-Chloromercuriphenyl sulfonic acid (pCMPS) (0.1–1mm, 60 min) reversibly increases the hydraulic resistance in a concentration-dependent manner.pCMPS does not have any effect on the cellular osmotic pressure.pCMPS increases the activation energy of water movement from 16.84 to 32.64 kJ mol−1, indicating that it inhibits water movement by modifying a low resistance pathway.pCMPS specifically increases the hydraulic resistance to exosmosis, but does not influence endosmosis. By contrast, nonyltriethylammonium (C9), a blocking agent of K+ channels, increases the hydraulic resistance to endosmosis, but does not affect that to exosmosis. These data support the hypothesis that water moves through membrane proteins in characean internodal cells and further that the polarity of water movement may be a consequence of the differential gating of membrane proteins on the endo- and exoosmotic ends.

Key Words

Characeae Nitellopsis K+-channel nonyltriethylammonium pCMPS transcellular osmosis water channels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benga, G. 1989. Water exchange through the erythrocyte membrane.Int. Rev. Cytol. 114:273–316PubMedGoogle Scholar
  2. Benga, G., Brain, A., Pop, V.I., Hodarnau, A., Wigglesworth, J.M. 1987. Freeze-fracture electron microscopic observations on the effects of sulphydryl group reagents on human erythrocyte membranes.Cell Biol. Int. Rep. 11:679–687CrossRefPubMedGoogle Scholar
  3. Benga, G., Pop, V.I., Popescu, O., Ionescu, M., Mihele, M. 1983. Water exchange through erythrocyte membranes: Nuclear magnetic resonance studies on the effects of inhibitors and of chemical modification of human membranes.J. Membrane Biol. 76:129–137Google Scholar
  4. Benga, G., Popescu, O., Borza, V., Pop, V.I., Hodarnau, A. 1989. Water exchange through erythrocyte membranes: Biochemical and nuclear magnetic resonance studies re-evaluating the effects of sulfhydryl reagents and of proteolytic enzymes of human membranes.J. Membrane Biol. 108:105–113Google Scholar
  5. Benz, R., Tosteson, M.T., Schubert, D. 1984. Formation and properties of tetramers of band 3 protein from human erythrocyte membranes in planer lipid bilayers.Biochim. Biophys. Acta 775:347–355PubMedGoogle Scholar
  6. Boyer, J.S., Wu, G. 1978. Auxin increases the hydraulic conductivity of auxin-sensitive hypocotyl tissue.Planta 139:227–237CrossRefGoogle Scholar
  7. Brown, P.A., Feinstein, M.B., Sha'afi, R.I. 1975. Membrane proteins related to water transport in human erythrocytes.Nature (London) 254:523–525Google Scholar
  8. Carceller, M.S., Sánchez, R.A. 1972. The influence of phytochrome on the water exchange of epidermal cells ofTaraxacum ofticinale.Experientia 28:364Google Scholar
  9. Dainty, J., Ginzburg, B.Z. 1964a. The measurement of hydraulic conductivity (osmotic permeability to water) of internodal characean cells by means of transcellular osmosis.Biochim. Biophys. Acta 79:102–111PubMedGoogle Scholar
  10. Dainty, J., Ginzburg, B.Z. 1964b. The permeability of the cell membrane ofNitella translucens to urea, and the effect of high concentrations of sucrose on this permeability.Biochim. Biophys. Acta 79:112–121PubMedGoogle Scholar
  11. Dick, D.A.T. 1966. Cell Water. Butterworths, LondonGoogle Scholar
  12. Dowler, M.J., Rayle, D.L., Cande, W.Z., Ray, P.M., Durand, H., Zenk, M.H. 1974. Auxin does not alter the permeability of pea segments to tritium-labeled water.Plant Physiol. 53:229–232Google Scholar
  13. Finklestein, A. 1987. Water movement through lipid bilayers, pores, and plasma membranes. Theory and reality. Distinguished Lecture Series of the Society of General Physiologists. Vol. 4. John Wiley & Sons, New York-Chichester-Brisbane-Toronto-SingaporeGoogle Scholar
  14. Fischbarg, J., Liebovitch, L.S., Koniarek, J.P. 1987. Inhibition of transepithelial osmotic water flow by blockers of the glucose transporter.Biochim. Biophys. Acta 898:266–274PubMedGoogle Scholar
  15. Gutknecht, J. 1967. Membranes ofValonia ventricosa: Apparent absence of water-filled pores.Science 158:787–788PubMedGoogle Scholar
  16. Gutknecht, J. 1968. Permeability ofValonia to water and solutes: Apparent absence of aqueous membrane pores.Biochim. Biophys. Acta 163:20–29PubMedGoogle Scholar
  17. Hansson Mild, K., Løvtrup, S. 1985. Movement and structure of water in animal cells. Ideas and experiments.Biochim. Biophys. Acta 822:155–167PubMedGoogle Scholar
  18. Kamiya, N., Kuroda, K. 1956. Artificial modification of the osmotic pressure of the plant cell.Protoplasma 46:423–436CrossRefGoogle Scholar
  19. Kamiya, N., Tazawa, M. 1956. Studies on water permeability of a single plant cell by means of transcellular osmosis.Protoplasma 46:394–422CrossRefGoogle Scholar
  20. Kang, B.G., Burg, S.P. 1971. Rapid change in water flux induced by auxins.Proc. Natl. Acad. Sci. USA 68:1730–1733Google Scholar
  21. Kiyosawa, K. 1975. Studies on the effects of alcohols on membrane water permeability onNitella.Protoplasma 86:243–252CrossRefPubMedGoogle Scholar
  22. Kiyosawa, K., Ogata, K. 1987. Influence of external osmotic pressure on water permeability and electrical conductance ofChara cell membrane.Plant Cell Physiol. 28:1013–1022Google Scholar
  23. Kiyosawa, K., Tazawa, M. 1972. Influence of intracellular and extracellular tonicities on water permeability in characean cells.Protoplasma 74:257–270CrossRefGoogle Scholar
  24. Kiyosawa, K., Tazawa, M. 1973. Rectification characteristics ofNitella membranes in respect to water permeability.Proctoplasma 78:203–214CrossRefGoogle Scholar
  25. Kohn, P.G. 1965. Tables of some physical and chemical properties of water.Symp. Soc. Exp. Biol. 19:3–16Google Scholar
  26. Kukita, F., Yamagishi, S. 1983. Effects of an outward water flow on potassium currents in a squid giant axon.J. Membrane Biol. 75:33–44Google Scholar
  27. Lichtner, F.T., Lucas, W.J., Spanswick, R.M. 1981. Effect of sulfhydryl reagents on the biophysical properties of the plasmalemma ofChara corallina.Plant Physiol. 68:899–904Google Scholar
  28. Loros, J., Taiz, L. 1982. Auxin increases the water permeability ofRhoeo andAllium epidermal cells.Plant Sci. Lett. 26:93–102CrossRefGoogle Scholar
  29. Lucas, W.J., Alexander, J.M. 1980. Sulfhydryl group involvement in plasmalemma transport of HCO3 and OH inChara corallina.Plant Physiol. 65:274–280Google Scholar
  30. Lukacovic, M.F., Toon, M., Solomon, A.K. 1984. Site of cation leak induced by mercurial sulfhydryl reagents.Biochim. Biophys. Acta 772:313–320Google Scholar
  31. Naccache, P., Sha'afi, R.I. 1974. Effect of PCMBS on water transfer across biological membranes.J. Cell Physiol. 83:449–456CrossRefPubMedGoogle Scholar
  32. Pike, C.S. 1976. Lack of influence of phytochrome on membrane permeability to tritiated water.Plant Physiol. 57:185–187Google Scholar
  33. Shiina, T., Tazawa, M. 1987a. Ca2+-activated Cl channel in plasmalemma ofNitellopsis obtusa.J. Membrane Biol. 99:137–146CrossRefGoogle Scholar
  34. Shiina, T., Tazawa, M. 1987b. Demonstration and characterization of Ca2+-channel in tonoplast-free cells ofNitellopsis obtusa.J. Membrane Biol. 96:263–276CrossRefGoogle Scholar
  35. Steudle, E., Tyerman, S.D. 1983. Determination of permeability coefficients, reflection coefficients, and hydraulic conductivity ofChara corallina using the pressure probe: Effects of solute concentration.J. Membrane Biol. 75:85–96Google Scholar
  36. Steudle, E., Zimmermann, U. 1974. Determination of the hydraulic conductivity and of reflection coefficients inNitella flexilis by means of direct cell-turgor pressure measurement.Biochim. Biophys. Acta 332:399–412Google Scholar
  37. Tazawa, M., Kamiya, N. 1965. Water relations of characean internodal cell.Annu. Rep. Biol. Works (Fac. Sci., Osaka Univ.) 13:123–419Google Scholar
  38. Tazawa, M., Kamiya, N. 1966. Water permeability of a characean internodal cell with special reference to its polarity.Aust. J. Biol. Sci. 19:399–419Google Scholar
  39. Tazawa, N., Shimmen, T. 1980. Demonstration of the K+ channel in the plasmalemma of tonoplast-free cells ofChara australis.Plant Cell Physiol. 21:1535–1540Google Scholar
  40. Tsutsui, I., Ohkawa, T., Nagai, R., Kishimoto, U. 1987. Role of calcium ion in the excitability and electrogenic pump activity of theChara corallina membrane: II. Effects of La3+, EGTA, and calmodulin antagonists on the current voltage relation.J. Membrane Biol. 96:75–84CrossRefGoogle Scholar
  41. Tyerman, S.D., Findlay, G.P., Paterson, G.J. 1986. Inward membrane current inChara inflata: II. Effects of pH, Cl-channel blockers and NH4+, and significance for the hyperpolarized state.J. Membrane Biol. 89:153–161Google Scholar
  42. Wayne, R., Tazawa, M. 1988. The actin cytoskelton and polar water permeability in characean cells.Protoplasma Suppl.2: 116–130Google Scholar
  43. Weisenseel, M.H., Smeibidl, E. 1973. Phytochrome controls the water permeability inMougeotia.Z. Pflanzenphysiol. 70:420–431Google Scholar
  44. Whittembury, G., Carpi-Medina, P., Gonzalez, E., Linares, H. 1984. Effect ofpara-chloromercuribenzenesulfonic acid and temperature on cell water osmotic permeability of proximal straight tubules.Biochim. Biophys. Acta 775:365–373Google Scholar
  45. Will, P.C., Hopfer, U. 1979. Apparent inhibition of active nonelectrolyte transport by an increased sodium permeability of the plasma membrane.J. Biol. Chem. 254:3806–3811PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Randy Wayne
    • 1
  • Masashi Tazawa
    • 1
  1. 1.Department of Botany, Faculty of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations