The Journal of Membrane Biology

, Volume 122, Issue 3, pp 193–202 | Cite as

Assembly and sealing of tight junctions: Possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin

  • M. S. Balda
  • L. González-Mariscal
  • R. G. Contreras
  • M. Macias-Silva
  • M. E. Torres-Marquez
  • J. A. García Sáinz
  • M. Cereijido
Articles

Summary

The making and sealing of a tight junction (TJ) requires cell-cell contacts and Ca2−, and can be gauged through the development of transepithelial electrical resistance (TER) and the accumulation of ZO-1 peptide at the cell borders. We observe that pertussis toxin increases TER, while AIF3 and carbamil choline (carbachol) inhibit it, and 5-guanylylimidodiphosphate (GTPΓs) blocks the development of a cell border pattern of ZO-1, suggesting that G-proteins are involved. Phospholipase C (PLC) and protein kinase C (PKC) probably participate in these processes since (i) activation of PLC by thyrotropin-1 releasing hormone increases TER, and its inhibition by neomycin blocks the development of this resistance; (ii) 1,2-dioctanoylglycerol, an activator of PKC, stimulates TER development, while polymyxin B and 1-(5-isoquinoline sulfonyl)-2-methyl-piperazine dihydrochloride (H7), which inhibit this enzyme, abolish TER. Addition of 3-isobutyl-1-methyl-xanthine, dB-cAMP or forskolin do not enhance the value of TER, but have just the opposite effect. Trifluoperazine and calmidazoline inhibit TER development, suggesting that calmodulin (CaM) also plays a role in junction formation. These results indicate that junction formation may be controlled by a network of reactions where G-proteins, phospholipase C, adenylate cyclase, protein kinase C and CaM are involved.

Key Words

epithelia tight junctions G-protein Ca2+-MDCK phospholipase C protein kinase C calmodulin exocytic fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.M., Stevenson, B.R., Jesaitis, L.A., Goodenough, D.A., Mooseker, M.S. 1988. Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby Canine kidney cells.J. Cell Biol. 106:1141–1149CrossRefPubMedGoogle Scholar
  2. Behrens, J., Birchmeier, W., Goodman, S.L., Imhof, B.A. 1985. Dissociation of Madin-Darby Canine Kidney epithelial Cells by the monoclonal antibody anti-arc-1: Mechanistic aspects and identification of the antigen as a component related to uvomorulin.J. Cell Biol. 101:1307–1315PubMedGoogle Scholar
  3. Bentzel, C.J., Hainau, B., Ho, S., Huits, W., Edelman, A., Anagnostopoulos, T., Benedetti, E.L. 1980. Cytoplasmic regulation of tight-junction permeability: Effect of plant cytokinins.Am. J. Physiol. 239:C75-C82PubMedGoogle Scholar
  4. Berridge, M.J., Irvine, R.F. 1989. Inositol phosphates and cell signalling.Nature 341:197–205PubMedGoogle Scholar
  5. Bigay, J., Deterre, P., Pfister, C., Chabre, M. 1985. Fluoroaluminates activate transducin-GDP by mimicking the γ-phosphate of GTP in its binding site.FEBS Lett. 191:181–185CrossRefPubMedGoogle Scholar
  6. Bizzari, C., Di Girolamo, M., D'Orazio, M.C., Corda, D. 1990. Evidence that guanine nucleotide-binding proteins linked to a muscarinic receptor inhibits directly phospholipase C.Proc. Natl. Acad. Sci. USA 87:4889–4893PubMedGoogle Scholar
  7. Blackmore, P.F., Bocckino, S.B., Waynick, L.E., Exton, J.H. 1985. Role of guanine nucleotide binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-biphosphate by calcium-mobilizing hormones and the control of cell calcium: Studies utilizing aluminium fluoride.J. Biol. Chem. 260:14477–14483PubMedGoogle Scholar
  8. Boller, K., Vestweber, D., Kemler, R. 1985. Cell-adhesion molecule uvomorulin is localized in the intramediate junctions of adult intestinal epithelial cells.J. Cell Biol. 100:327–332PubMedGoogle Scholar
  9. Cereijido, M., Gonzalez-Mariscal, L., Avila, G., Contreras, R.G. 1988. Tight junctions.Crit. Rev. Anat. Sci. 1:171–192Google Scholar
  10. Cereijido, M., Gonzalez-Mariscal, L., Contreras, R.G. 1989. Tight junction: The barrier between higher organisms and environment.News. Physiol. Sci. 4:72–74Google Scholar
  11. Cereijido, M., Robbins, E.S., Dolan, W.J., Rotunno, C.A., Sabatini, D.D. 1978a. Polarized monolayers formed by epithelial cells on a permeable and translucent support.J. Cell Biol. 77:853–880PubMedGoogle Scholar
  12. Cereijido, M., Rotunno, C.A., Robbins E.S., Sabatini, D.D. 1978b. Polarized epithelial membranes produced in vitro.In: Membrane Transport Processes. J.F. Hoffman, editor. Raven, New YorkGoogle Scholar
  13. Chevalier, J., Bourguet, J., Pinto da Silva, P. 1985. Osmotic gradient reversal induces massive assembly of tight junction strands at the basal pole of toad bladder epithelial cells.INSERM (Paris) 67:28Google Scholar
  14. Enjalbert, A., Sladeczek, F., Gillon, G., Bertrand, P., Shu, C., Epelbaum, J., García-Sáinz, J.A., Jard, S., Lombard, C., Kordon, C., Bockaert, J. 1986. Angiotensin II and dopamine modulate both cAMP and inositol phosphate production in anterior pituitary cells. Involvement in prolactin secretion.J. Biol. Chem. 261:4071–4075PubMedGoogle Scholar
  15. Fuse, I., Iwanaga, T., Tai, H.-H. 1989. Phorbol ester, 1,2-diacylglycerol, and collagen induce inhibition of arachidonic acid incorporation into phospholipids in human platelets.J. Biol. Chem. 264:3890–3895PubMedGoogle Scholar
  16. García-Sáinz, J.A. 1985. Effect of pertussis toxin on the hormonal responsiveness of different tissues.In: Pertussis Toxin. R.D. Sekura, J. Moss and M. Vaugham, editors. Academic, New YorkGoogle Scholar
  17. González-Mariscal, L., Chavez de Ramirez, B., Cereijido, M. 1985. Tight junction formation in cultured epithelial cells (MDCK).J. Membrane Biol. 86:113–125Google Scholar
  18. González-Mariscal, L., Contreras, R.G., Golivar, J.J., Ponce, A., Chavez de Ramirez, B., Cereijido, M. 1990. The role of Ca++ in tight junction formation between epithelial cell (MDCK).Am. J. Physiol. 259:C978-C986PubMedGoogle Scholar
  19. Gumbiner, B., Simmons, K. 1986. A functional assay for proteins involved in establishing of epithelial occluding barriers: Identification of a uvomorulin-like peptide.J. Cell Biol. 102:457–468PubMedGoogle Scholar
  20. Gumbiner, B., Stevenson, B., Grimaldi, A. 1988. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex.J. Cell Biol. 107:1575–1588PubMedGoogle Scholar
  21. Hernández-Sotomayer, S.M.T., Macías-Silva, M., Malbon, C.C., García Sáinz, J.A. 1990. Modulation G activity by phorbol myristate acetate in rat hepatocytes.Am. J. Physiol. (in press) Google Scholar
  22. Karnaky, K.J., Kinter, L.B., Kinter, W.B., Sterling, C.E. 1976. Teleost chloride cell. II. Autoradiographic localization of gill Na, K-ATPase in killfishFundus heteroelitus adapted to low and high salinity environments.J. Cell Biol. 70:157–165PubMedGoogle Scholar
  23. Kawai, Y., Whitsel, C., Arinze, I.J. 1986. NADP+ enhanced cholera and pertussis toxin catalyzed ADP-ribosylation of membrane proteins.J. Cyclic Nucleotide Protein Phosphoryl. Res. 11:265–274Google Scholar
  24. Kin, U.H., Kin, J.W., Rhee, S.G. 1989. Phosphorylation of phospholipase C by protein kinase A.J. Cell Biol. 109:50AGoogle Scholar
  25. Knight, D.E., Sugden, D., Baker, P.F. 1988. Evidence implicating protein kinase C in exocytosis from electropermeabilized bovine chromaffin cells.J. Membrane Biol. 104:21–34Google Scholar
  26. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227:680–685PubMedGoogle Scholar
  27. Lapetina, E.G., Watson, S.P., Cuatrecasas, P. 1984. Myo-Inositol, 1,4,5-trisphosphate stimulates protein phosphorylation in saponin-permeabilized human platelets.Proc. Natl. Acad. Sci. USA 81:7431–7435PubMedGoogle Scholar
  28. Linden, J., Delahunty, T.M. 1989. Receptors that inhibit phosphoinositide breakdown.Trends Pharmacol. Sci. 10:114–120PubMedGoogle Scholar
  29. Lowe, P.J., Miyai, K., Steinbach, J.H., Hardison, G.M. 1988. Hormonal regulation of hepatocyte tight junctional permeability.Am. J. Physiol. 255:G454-G461PubMedGoogle Scholar
  30. Lowry, O.H., Rosebrough, N.J., Farr, L.A., Randall, R.J. 1953. Protein measurement with Folin phenol reagent.J. Biol. Chem. 193:265–272Google Scholar
  31. Madara, J.L. 1983. Increases in guinea pig small intestinal transepithelial resistance induced by osmotic loads are accompanied by rapid alterations in absorptive-cell tight-junction structure.J. Cell Biol. 97:125–135PubMedGoogle Scholar
  32. Madara, J.L., Pappenheimer, J.R. 1987. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia.J. Membrane Biol. 100:149–164Google Scholar
  33. Martin, T.F.J., Lucas, D.O., Bajjaleih, S.M., Kowalchyk, J.A. 1986. Thyrotropin releasing hormone activates a Ca++ dependent polyphosphoinositide phosphodiesterase and pertussis toxin insensitive mechanism.J. Biol. Chem. 261:2918–2927PubMedGoogle Scholar
  34. Martinez-Palomo, A., Meza, I., Beaty, G., Cereijido, M. 1980. Experimental modulation of occluding junctions in a cultured transporting epithelium.J. Cell Biol. 87:736–745PubMedGoogle Scholar
  35. May, W.S., Lapetina, E.G., Cuatrecasas, P. 1986. Intracellular activation of protein kinace C and regulation of surface transferrin receptor by diacylglycerol is a spontaneous reversible process that is associated with rapid formation of phosphatidic acid.Proc. Natl. Acad. Sci. USA 83:1281–1284PubMedGoogle Scholar
  36. Mazzei, G.J., Schatzman, R.C., Scott-Turner, R., Vogler, W.R., Kuo, J.F. 1984. Phospholipid-sentitive Ca2+-dependent protein kinase inhibition by R-24571, a calmodulin antagonist.Biochem. Pharmacol. 33:125–130PubMedGoogle Scholar
  37. Murayama, T., Ui, M. 1984. [3H]GDP release from rat and hamster adipocyte membranes independently linked to receptors involved in activation or inhibition of adenylate cyclase. Differential susceptibility to two toxins.J. Biol. Chem. 259:761–769PubMedGoogle Scholar
  38. Nathanson, N.M. 1987. Molecular properties of the muscarinic acetylcholine receptor.Annu. Rev. Neurosci. 10:195–236PubMedGoogle Scholar
  39. Ozawa, M., Baribault, H., Kemler, R. 1989. The cytoplasmic domain of the cell adhesion molecule uvomorulin associated with three independent proteins structurally related in different species.EMBO J. 8:1711–1717PubMedGoogle Scholar
  40. Pidikiti, N., Gamero, D., Gamero, J., Hassid, A. 1985. Bradykinin-evoked modulation of cytosolic Ca++ concentration in cultured renal epithelial (MDCK) cells.Biochem. Biophys. Res. Commun. 130:807–813PubMedGoogle Scholar
  41. Portilla, D., Morrissey, J., Morrison, A.R. 1988. Bradykinin activated membrane associated phospholipase C in Madin-Darby Canine Kidney cells.J. Clin. Invest. 81:1896–1902PubMedGoogle Scholar
  42. Sekura, R.D., Fish, F., Manclark, C.R., Meade, B., Zhang, Y.-L. 1983. Pertussis toxin: Affinity purification of a new ADP-ryboxyltransferase.J. Biol. Chem. 258:14647–14651PubMedGoogle Scholar
  43. Sheu, H., Kitajima, Y., Yaoita, H. 1989. Involvement of protein kinase C in translocation of desmoplakins from cytosol to plasma membrane during desmosome formation in human squamous cell carcinoma cells grown in low normal calcium concentration.Exp. Cell Res. 185:176–190PubMedGoogle Scholar
  44. Slivka, S.R., Insel, P.A. 1988. Phorbol ester and neomycin dissociate bradykinin receptor-mediated arachidonic acid release and polyphosphoinositide hydrolysis in Madin-Darby canine kidney cellsJ. Biol. Chem. 263:14640–14647PubMedGoogle Scholar
  45. Stevenson, B.R., Anderson, J.M., Braun, I.D., Mooseker, M.S. 1989. Phosphorylation of the tight-junction protein ZO-1 in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance.Biochem. J. 263:597–599PubMedGoogle Scholar
  46. Stevenson, B.R., Anderson, J.M., Bullivant, S. 1988. The epithelial tight junction: Structure, Function and preliminary biochemical characterization.Mol. Cell. Biochem. 83:129–145PubMedGoogle Scholar
  47. Stevenson, B.R., Siliciano, J.D., Mooseker, M.S., Goodenough, D.A. 1986. Identification of ZO-1: A high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia.J. Cell Biol. 103:755–766PubMedGoogle Scholar
  48. Tice, L.W., Wolman, S.H., Carter, R.C. 1975. Changes in tight junctions of thyroid epithelium with changes in thyroid activity.J. Cell Biol. 66:657–666PubMedGoogle Scholar
  49. Wang, A.Z., Ojakian, G.K., Nelson, J. 1990. Steps in the morphogenesis of a polarized epithelium: II. Disassembly and assembly of plasma membrane domains during reversal of epithelial cell polarity in multicellular epithelial (MDCK) cysts.J. Cell Sci. 95:153–165PubMedGoogle Scholar
  50. Watson, S.P., Reep, B., McConnel, R.T., Lapetina, F.G. 1985. Collagen stimulates [3H]inositol triphosphate formation in indomethacin-treated human platelets.Biochem. J. 226:831–837PubMedGoogle Scholar
  51. Winkel, G.K., Ferguson, J.E., Takeichi, M., Nuccitelli, S. 1990. Activation of protein kinase C triggers premature compaction in the four-cell stage mouse embryon.Dev. Biol. 138:1–15PubMedGoogle Scholar
  52. Wrenn, B.W., Katoh, N., Schatzman, C., Kuo, J.F. 1981. Inhibition by phenothiazine antipsychotic drugs of calcium-dependent phosphorylation of cerebral cortex proteins regulated by phospholipid or calmodulin.Life Sci. 29:725–733PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • M. S. Balda
    • 1
  • L. González-Mariscal
    • 1
  • R. G. Contreras
    • 1
  • M. Macias-Silva
    • 1
  • M. E. Torres-Marquez
    • 1
  • J. A. García Sáinz
    • 2
  • M. Cereijido
    • 1
  1. 1.Department of Physiology and BiophysicsCenter for Research and Advanced StudiesMexico 14, D.F.Mexico
  2. 2.Instituto de Fisiologia CelularUNAMMexico, D.F.Mexico

Personalised recommendations