The Journal of Membrane Biology

, Volume 112, Issue 2, pp 109–122 | Cite as

Bicarbonate permeability of the outwardly rectifying anion channel

  • J. A. Tabcharani
  • T. J. Jensen
  • J. R. Riordan
  • J. W. Hanrahan


Single anion-selective channels have been studied in cultured human epithelial cells using the patch-clamp technique. Three cell types were used as models for different anion transport systems: (i) PANC-1, a cell line derived from the pancreatic duct, (ii) T84, a Cl-secreting colonic cell line, and (iii) primary cultures of sweat duct epithelium. Outwardly rectifying anion-selective channels were observed in all three preparations and were indistinguishable with respect to conductance, selectivity and gating. Striking similarities between HCO3- and Cl-secreting epithelia, and the high density of outward rectifiers in pancreatic cells prompted us to study HCO3 permeation through this channels. HCO3 permeability was significant when channels were bathed in symmetrical 150mm HCO3 solutions, Cl−HCO3 mixtures, and under bi-ionic conditions with outwardly and inwardly directed HCO3 gradients. Permeability ratios (PHCO3/PCl) estimated from bi-ionic reversal potentials ranged from 0.50 to 0.64, although conductance ratios greater than 1.2 were observed with high extracellular pH. Chloride did not inhibit HCO3 permeation noticeably but rather had a small stimulatory effect when present on the opposite side of the membrane. The prevalence of outward rectifiers in PANC-1 and their permeability to bicarbonate suggests the channel may have a dual role in HCO3 secretion; to allow Cl recycling at the apical membrane and to mediate some of the HCO3 flux. Defective modulation of this channel in cystic fibrosis might provide a common basis for dysfunction in epithelia having very different anion transport properties (e.g., HCO3 secretion, Cl secretion and Cl absorption).

Key Words

bicarbonate secretion chloride channel epithelia cystic fibrosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almers, W., McClesky, E.W. 1984. The nonselective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore.J. Physiol. (London) 353:585–608Google Scholar
  2. 2.
    Ashford, M.L.J. 1986. Single channel currents in cultured rat epididymal cells.J. Physiol. (London) 371:142PGoogle Scholar
  3. 3.
    Barry, P.H., Diamond, J.M. 1970. Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes.J. Membrane Biol. 3:93–122Google Scholar
  4. 4.
    Bear, C.E. 1988. Phosphorylation-activated chloride channels in human skin fibroblasts.FEBS Lett. 237:145–149PubMedGoogle Scholar
  5. 5.
    Bijman, J., Scholte, B., De Jonge, H.R. Hoogeveen, A.T., Kansen, M., Sinaasappel, M., Kamp, A.W.M. van der. 1988. Chloride transport in cystic fibrosis: Chloride channel regulation in cultured sweat duct and cultured nasal polyp epithelium.In: Cellular and Molecular Basis of Cystic Fibrosis. pp. 133–140. G. Mastella and P.M. Quinton, editors. San Francisco PressGoogle Scholar
  6. 6.
    Booth, N.P., Brown, P.D., Donohue, M., Elliott, A.C., Lau, K.R., Pearce, R.J. 1988. The effects of DIDS and chloride-free solutions on the acidosis induced by acetylcholine in isolated acini from rabbit mandibular salivary gland.J. Physiol. (London) 403:44PGoogle Scholar
  7. 7.
    Bormann, J., Hamill, O.P., Sakmann, B. 1987. Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones.J. Physiol. (London) 385:243–286Google Scholar
  8. 8.
    Brodsky, W.A., Ehrenspeck, G., Durham, J. 1977. Some new aspects of anion pumping by the turtle bladder.Acta Physiol. Scand. (Suppl.):341–351Google Scholar
  9. 9.
    Brown, P.D., Dho, S., Elliott, A.C., Lau, K.R. 1988. Acetylcholine causes a transient intracellular acidosis in isolated acini from rabbit mandibular gland.J. Physiol. (London) 396:171PGoogle Scholar
  10. 10.
    Butt, A.G., Worrell, R.T., Frizzell, R.A. 1988. A volume-sensitive epithelial chloride conductance.FASEB J. 2:A1284Google Scholar
  11. 11.
    Case, R.M., Holz, J., Hutson, D., Scratcherd, T., Wynne, R.D.A. 1979. Electrolyte secretion by the isolated cat pancreas during replacement of extracellular bicarbonate by organic anions and chloride by inorganic anions.J. Physiol. (London) 286:563–576Google Scholar
  12. 12.
    Case, R.M., Hunter, M., Novak, I., Young, J.A. 1984. The anionic basis of fluid secretion by the rabbit mandibular salivary gland.J. Physiol. (London) 349:619–630Google Scholar
  13. 13.
    Case, R.M., Scratcherd, T. 1970. On the permeability of the pancreatic duct membrane.Biochim. Biophys. Acta 219:493–495PubMedGoogle Scholar
  14. 14.
    Collie, G., Buchwald, M., Harper, P., Riordan, J.R. 1985. Culture of sweat gland epithelial cells from normal individuals and patients with cystic fibrosis.In Vitro 21:597–602Google Scholar
  15. 15.
    Davis, B., Fisher, S., Krouse, M., Wine, J. 1988. Chloride channels in cultured human placental trophoblasts.Pediatr. Pulmonol. S2:99–100Google Scholar
  16. 16.
    Degnan, K.J., Karnaky, K.J., Zadunaisky, J.A. 1977. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells.J. Physiol. (London) 271:155–191Google Scholar
  17. 17.
    Ehrenspeck, G. 1982. Effect of 3-isobutyl-1-methylxanthine on HCO3 transport in turtle bladder. Evidence for electrogenic HCO3 secretion.Biochim. Biophys. Acta 684:219–227PubMedGoogle Scholar
  18. 18.
    Flemstrom, G. 1987. Gastric and duodenal mucosal bicarbonate secretion.In: Physiology of the Gastrointestinal Tract. (2nd ed.) L.R. Johnson, editor. Raven, New YorkGoogle Scholar
  19. 19.
    Flemstrom, G., Heylings, J.R., Garner, A. 1982. Gastric and duodenal HCO3 transport in vitro: Effects of hormones and proposed local transmitters.Am. J. Physiol. 242:G100-G110PubMedGoogle Scholar
  20. 20.
    Frizzell, R.A. 1987. Cystic fibrosis: A disease of ion channels?Trends Neurosci 10:190–193Google Scholar
  21. 21.
    Frizzell, R.A., Halm, D.R., Rechkemmer, G., Shoemaker, R.L. 1986. Chloride channel regulation in secretory epithelia.Fed. Proc. 45:2727–2731PubMedGoogle Scholar
  22. 22.
    Frizzell, R.A., Rechkemmer, G., Shoemaker, R.L. 1986. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis.Science 233:558–560PubMedGoogle Scholar
  23. 23.
    Frizzell, R.A., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8Google Scholar
  24. 24.
    Giraldez, F., Sepúlveda, F.V., Sheppard, D.N. 1988. An outward rectifying Cl-selective channel in isolatedNecturus enterocytes.J. Physiol. (London) 407:102PGoogle Scholar
  25. 25.
    Gray, M.A., Greenwell, J.R., Argent, B.E. 1988. Ion channels in pancreatic duct cells: Characterization and role in bicarbonate secretion.In: Cellular and Molecular Basis of Cystic Fibrosis. G. Mastella and P.M. Quinton, editors. San Francisco PressGoogle Scholar
  26. 26.
    Gray, M.A., Greenwell, J.R., Argent, B.E. 1988. Secretin-regulated chloride channel on the apical plasma membrane of pancreatic duct cells.J. Membrane Biol. 105:131–142Google Scholar
  27. 27.
    Greenwell, J.R. 1977. The selective permeability of the pacreatic duct of the cat to monovalent ions.Pfluegers Arch. 367:265–270Google Scholar
  28. 28.
    Gutknecht, J., Bisson, M.A., Tosteson, F.C. 1977. Diffusion of carbon dioxide through lipid bilayer membranes. Effects of carbonic anhydrase, bicarbonate, and unstirred layers.J. Gen. Physiol. 69:779–794PubMedGoogle Scholar
  29. 29.
    Halm, D.R., Frizzell, R.A. 1988. Ion permeation through the apical membrane chloride channel in a secretory epithelial cell.FASEB J. 2:A1283Google Scholar
  30. 30.
    Halm, D.R., Rechkemmer, G., Shoumacher, R.A., Frizzell, R.A. 1987. Biophysical properties of an apical membrane chloride channel in a secretory epithelial cell line.Fed. Proc. 46:636Google Scholar
  31. 31.
    Halm, D.R., Rechkemmer, G., Shoumacher, R.A., Frizzell, R.A. 1988. Apical membrane chloride channels in a colonic cell line activated by secretory agonists.Am. J. Physiol. 254:C505-C511Google Scholar
  32. 32.
    Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. 391:85–100CrossRefGoogle Scholar
  33. 33.
    Hanrahan, J.W., Alles, W., Lewis, S.A. 1985. Single anion-selective channels in basolateral membrane of a mammalian tight epithelium.Proc. Natl. Acad. Sci. USA 82:7791–7795PubMedGoogle Scholar
  34. 34.
    Hayslett, J.P., Gögelein, H., Kunzelmann, K., Greger, R. 1987. Characteristics of apical chloride channels in human colon cells (HT29).Pfluegers Arch. 410:487–494Google Scholar
  35. 35.
    Hess, P., Tsien, R.W. 1984. Mechanism of ion permeation through calcium channels.Nature (London) 309:453–456Google Scholar
  36. 36.
    Hille, B. 1973. Potassium channels in myelinated nerve: Selective permeability to small cations.J. Gen. Physiol. 61:669–686Google Scholar
  37. 37.
    Kaila, K., Voipio, J. 1987. Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance.Nature (London) 330:163–165Google Scholar
  38. 38.
    Klyce, S.D., Wong, R.K.S. 1977. Site and mode of adrenalin action on chloride transport across the rabbit corneal epithelium.J. Physiol. (London) 266:777–799Google Scholar
  39. 39.
    Kopelman, H., Corey, M., Gaskin, K., Durie, P., Weizman, Z., Forstner, G. 1988. Impaired chloride secretion, as well as bicarbonate secretion, underlies the fluid secretory defect in the cystic fibrosis pancreas.Gastroenterology 95:349–355PubMedGoogle Scholar
  40. 40.
    Krnjević, K., Mitchell, J.F., Szerb, J.C. 1963. Determination of iontophoretic release of acetylcholine from micropipettes.J. Physiol. (London) 165:421–436Google Scholar
  41. 41.
    Li, M., McCann, J.D., Liedtke, C.M., Nairn, A.C., Greengard, P., Welsh, M.J. 1988. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium.Nature (London) 331:358–360Google Scholar
  42. 42.
    Lieber, M., Mazzetta, J., Nelson-Rees, W., Kaplan, M., Todaro, G. 1975. Establishment of a continuous tumor-cell line (PANC-1) from a human carcinoma of the exocrine pancreas.Int. J. Cancer. 15:741–747PubMedGoogle Scholar
  43. 43.
    Madden, M.E., Sarras, M.P., Jr. 1988. Morphological and biochemical characterization of a human pancreatic ductal cell line (PANC-1).Pancreas 3:512–528PubMedGoogle Scholar
  44. 44.
    McCann, J.D., Welsh, M.J., Liedtke, C.M. 1987. Chloride channel currents in normal and cystic fibrosis airway epithelial cells.Fed. Proc. 46:1272 (abstr.).Google Scholar
  45. 45.
    Melvin, J.E., Moran, A., Turner, R.J. 1988. The role of HCO3 and Na+/H+ exchange in the response of rat parotid acinar cells to muscarinic stimulation.J. Biol. Chem. 263:19564–19569PubMedGoogle Scholar
  46. 46.
    Novak, I., Greger, R. 1988. Properties of the luminal membrane of isolated perfused rat pancreatic ducts. Effects of cyclic AMP and blockers of chloride transport.Pfluegers Arch. 411:546–553Google Scholar
  47. 47.
    Quinton, P.M. 1987. Physiology of sweat secretion.Kidney Int. 32:S102-S108Google Scholar
  48. 48.
    Reinhardt, R., Bridges, R.J., Rummel, W., Lindemann, B. 1987. Properties of an anion-selective channel from rat colonic enterocyte plasma membranes reconstituted into planar phospholipid bilayers.J. Membrane Biol. 95:47–54Google Scholar
  49. 49.
    Robinson, R.A., Stokes, R.H. 1965. Electrolyte Solutions. (2nd Ed.). Butterworths, LondonGoogle Scholar
  50. 50.
    Rothman, S.S., Brooks, F.P. 1965. Pancreatic secretion in vitro in “Cl-free”, “CO2-free”, and low Na+ environment.Am. J. Physiol. 209:790–796PubMedGoogle Scholar
  51. 51.
    Saito, Y., Wright, E.M. 1983. Bicarbonate transport across the frog choroid plexus and its control by cyclic nucleotides.J. Physiol. (London) 336:635–648Google Scholar
  52. 52.
    Sataki, N., Durham, J.H., Ehrenspeck, G., Brodsky, W.A. 1983. Active electrogenic mechanisms for alkali and acid transport in turtle bladders.Am. J. Physiol. 244:C259-C269Google Scholar
  53. 53.
    Schoppa, N., Shorofsky, S.R., Jow, F., Fozzard, H., Nelson, D.J. 1988. Whole cell currents in cultured canine tracheal epithelial cells.Pediatr. Pulmonol. S2:101–102Google Scholar
  54. 54.
    Seow, F., Young, J.A. 1984. Anionic dependency of secretin-stimulated secretion by the isolated perfused rat pancreas.In: Secretion: Mechanism and Control. R.M. Case, J.M. Lingard, and J.A. Young, editors. pp. 97–102. Manchester University Press, ManchesterGoogle Scholar
  55. 55.
    Shorofsky, S.R., Field, M., Fozzard, H.A. 1982. The cellular mechanism of active chloride secretion in vertebrate epithelia: Studies in intestine and trachea.Philos. Trans. R. Soc. London B299:597–607Google Scholar
  56. 56.
    Shoumacher, R.A., Shoemaker, R.L., Halm, D.R., Tallant, E.A., Wallace, R.W., Frizzell, R.A. 1987. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells.Nature (London) 330:752–754Google Scholar
  57. 57.
    Silva, P., Stoff, J., Field, M., Fine, L., Forrest, J., Epstein, F.H. 1977. Mechanisms of active chloride secretion by shark rectal gland: Role of Na-K-ATPase in chloride transport.Am. J. Physiol. 233:F298-F306Google Scholar
  58. 58.
    Simson, J.N.L., Merhav, A., Silen, W. 1981. Alkaline secretion by amphibian duodenum. III. Effects of dBcAMP, theophylline, and prostaglandins.Am. J. Physiol. 241:G529–536Google Scholar
  59. 59.
    Smith, P.L. 1985. Electrolyte transport by alkaline gland of little skateRaja erinacea.Am. J. Physiol. 248:R346-R352PubMedGoogle Scholar
  60. 60.
    Stetson, D.L., Beauwens, R., Palmisano, J., Mitchell, P.P., Steinmetz, P.R. 1985. A double-membrane model for urinary bicarbonate secretion.Am. J. Physiol. 249:F546-F552Google Scholar
  61. 61.
    Stuenkel, E.L., Machen, T.E., Williams, J.A. 1988. pH regulatory mechanisms in rat pancreatic ductal cells.Am. J. Physiol. 254:G925-G930Google Scholar
  62. 62.
    Swanson, C.H., Solomon, A.K. 1973. A micropuncture investigation of the whole tissue mechanism of electrolyte secretion by the in vitro rabbit pancreas.J. Gen. Physiol. 62:407–429PubMedGoogle Scholar
  63. 63.
    Swanson, C.H., Solomon, A.K. 1975. Micropuncture analysis of the cellular mechanisms of electrolyte secretion by the in vitro rabbit pancreas.J. Gen. Physiol. 65:22–45PubMedGoogle Scholar
  64. 64.
    Weast, R.C. (editor) 1985. CRC Handbook of Chemistry and Physics. (66th Ed.) pp. D167-D168. CRC Press, Boca Raton (FL)Google Scholar
  65. 65.
    Welsh, M.J., Leidtke, C. 1986. Chioride and potassium channels in cystic fibrosis airway epithelia.Nature (London) 322:467–470Google Scholar
  66. 66.
    Welsh, M.J., Smith, P.L., Frizzell, R.A. 1983. Chloride secretion by canine tracheal epithelium: III. Membrane resistances and electromotive forces.J. Membrane Biol. 71:209–218Google Scholar
  67. 67.
    Yamamoto, D., Suzuki, N. 1987. Blockage of chloride channels by HEPES buffer.Proc. R. Soc. Lond. B230:93–100PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • J. A. Tabcharani
    • 1
  • T. J. Jensen
    • 2
  • J. R. Riordan
    • 2
  • J. W. Hanrahan
    • 1
  1. 1.Department of PhysiologyMcGill UniversityMontrealCanada
  2. 2.Department of BiochemistryHospital for Sick Children Research Institute and University of TorontoTorontoCanada

Personalised recommendations