The Journal of Membrane Biology

, Volume 89, Issue 1, pp 1–8 | Cite as

Role of membrane transport in metabolism and function of glutathione in mammals

  • Shiro Bannai
  • Noriko Tateishi
Topical Review

Key Words

glutathione membrane transport cystine cysteine glutamate mammalian cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, W.A., Bridges, R.J., Meister, A. 1984. Extracellular metabolism of glutathione accounts for its disappearance from the basolateral circulation of the kidney.J. Biol. Chem. 259: 15393–15400Google Scholar
  2. Anderson, M.E., Meister, A. 1983. Transport and direct utilization of γ-glutamylcyst(e)ine for glutathione synthesis.Proc. Natl. Acad. Sci. USA 80: 707–711Google Scholar
  3. Bannai, S. 1984a. Transport of cystine and cysteine in mammalian cells.Biochim. Biophys. Acta 779: 289–306Google Scholar
  4. Bannai, S. 1984b. Induction of cystine and glutamate transport activity in human fibroblasts by diethyl maleate and other electrophilic agents.J. Biol. Chem. 259: 2435–2440Google Scholar
  5. Bannai, S., Ishii, T. 1982. Transport of cystine and cysteine and cell growth in cultured human diploid fibroblasts: Effect of glutamate and homocysteate.J. Cell. Physiol. 112: 265–272Google Scholar
  6. Bannai, S., Kitamura, E. 1980. Transport interaction ofl-cystine andl-glutamate in human diploid fibroblasts in culture.J. Biol. Chem. 255: 2372–2376Google Scholar
  7. Bannai, S., Kitamura, E. 1981. Role of proton dissociation in the transport of cystine and glutamate in human diploid fibroblasts in culture.J. Biol. Chem. 256: 5770–5772Google Scholar
  8. Bannai, S., Kitamura, E. 1982. Adaptive enhancement of cystine and glutamate uptake in human diploid fibroblasts in culture.Biochim. Biophys. Acta 721: 1–10Google Scholar
  9. Bannai, S., Takada, A., Tateishi, N. 1984. Traits and regulation of anionic amino acid transport system xc.Fed. Proc. 43: 1814Google Scholar
  10. Bannai, S., Tsukeda, H. 1979. The export of glutathione from human diploid cells in culture.J. Biol. Chem. 254: 3444–3450Google Scholar
  11. Bartoli, G.M., Sies, H. 1978. Reduced and oxidized glutathione efflux from liver.FEBS Lett. 86: 89–91Google Scholar
  12. Christensen, H.N. 1984. Organic ion transport during seven decades. The amino acids.Biochim. Biophys. Acta 779: 255–269Google Scholar
  13. Christensen, H.N., Handlogten, M.E. 1981. Role of system gly in glycine transport in monolayer cultures of liver cells.Biochem. Biophys. Res. Commun. 98: 102–107Google Scholar
  14. Demaster, E.G., Shirota, F.N., Redfern, B., Goon, D.J.W., Nagasawa, H.T. 1984. Analysis of hepatic reduced glutathione, cysteine and homocysteine by cation-exchange high-performance liquid chromatography with electrochemical detection.J. Chromatog. 308: 83–91Google Scholar
  15. Eagle, H., Washington, C., Friedman, S.M. 1966. The synthesis of homocystine, cystathionine, and cystine by cultured diploid and heteroploid human cells.Proc. Natl. Acad. Sci. USA 56: 156–163Google Scholar
  16. Ellory, J.C., Jones, S.E.M., Young, J.D. 1981. Glycine transport in human erythrocytes.J. Physiol. (London) 320: 403–422Google Scholar
  17. Ellory, J.C., Preston, R.L., Osotimehin, B., Young, J.D. 1983. Transport of amino acids for glutathione biosynthesis in human and dog red cells.Biomed. Biochim. Acta 42:S48-S52Google Scholar
  18. Franchi-Gazzola, R., Gazzola, G.C., Dall'Asta, V., Guidotti, G.G. 1982. The transport of alanine, serine, and cysteine in cultured human fibroblasts.J. Biol. Chem. 257: 9582–9587Google Scholar
  19. Gazzola, G.C., Dall'Asta, V., Bussolati, O., Makowske, M., Christensen, H.N. 1981. A stereoselective anomaly in dicarboxylic amino acid transport.J. Biol. Chem. 256: 6054–6059Google Scholar
  20. Gazzola, G.C., Dall'Asta, V., Guidotti, G.G. 1980. The transport of neutral amino acids in cultured human fibroblasts.J. Biol. Chem. 255: 929–936Google Scholar
  21. Griffith, O.W., Novogrodsky, A., Meister, A. 1979. Translocation of glutathione from lymphoid cells that have markedly different γ-glutamyl transpeptidase activities.Proc. Natl. Acad. Sci. USA 76: 2249–2252Google Scholar
  22. Hill, K.E., Burk, R.F. 1983. Effect of methionine and cysteine on glutathione synthesis by selenium-deficient isolated rat hepatocytes.In: Functions of Glutathione. Biochemical, Physiological, Toxicological, and Clinical Aspects. A. Larsson, S. Orrenius, A. Holmgren, and B. Mannervik, editors. pp. 117–124. Raven, New YorkGoogle Scholar
  23. Inaba, M., Maede, Y. 1984. Increase of Na+-gradient-dependentl-glutamate andl-aspartate transport in high K+ dog erythrocytes associated with high activity of (Na+, K+)-ATPase.J. Biol. Chem. 259: 312–317Google Scholar
  24. Inoue, M., Akerboom, T.P.M., Sies, H., Kinne, R., Thao, T., Arias, I.M. 1984a. Biliary transport of glutathione S-conjugate by rat liver canalicular membrane vesicles.J. Biol. Chem. 259:4998–5002Google Scholar
  25. Inoue, M., Kinne, R., Tran, T., Arias, I.M. 1983. The mechanism of biliary secretion of reduced glutathione. Analysis of transport process in isolated rat-liver canalicular membrane vesicles.Eur. J. Biochem. 134:467–471Google Scholar
  26. Inoue, M., Kinne, R., Tran, T., Arias, I.M. 1984. Glutathione transport across hepatocyte plasma membranes. Analysis using isolated rat-liver sinusoidal-membrane vesicles.Eur. J. Biochem. 138:491–495Google Scholar
  27. Ishii, T., Hishinuma, I., Bannai, S., Sugita, Y. 1981. Mechanism of growth promotion of mouse lymphoma L1210 cells in vitro by feeder layer or 2-mercaptoethanol.J. Cell. Physiol. 107:283–293Google Scholar
  28. Kilberg, M.S. 1982. Amino acid transport in isolated rat hepatocytes.J. Membrane Biol. 69:1–12Google Scholar
  29. Kilberg, M.S., Handlogten, M.E., Christensen, H.N. 1980. Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs.J. Biol. Chem. 255:4011–4019Google Scholar
  30. Kilberg, M.S., Handlogten, M.E., Christensen, H.N. 1981. Characteristics of System ASC for transport of neutral amino acids in the isolated rat hepatocyte.J. Biol. Chem. 256:3304–3312Google Scholar
  31. King, G.F., Kuchel, P.W. 1985. Assimilation of α-glutamyl-peptides by human erythrocytes. A possible means of glutamate supply for glutathione synthesis.Biochem. J. 227:833–842Google Scholar
  32. Lash, L.H., Jones, D.P. 1984. Renal glutathione transport. Characteristics of the sodium-dependent system in the basal-lateral membrane.J. Biol. Chem. 259:14508–14514Google Scholar
  33. Lauterburg, B.H., Adams, J.D., Mitchell, J.R. 1984. Hepatic glutathione homeostasis in the rat: Efflux accounts for glutathione turnover.Hepatology 4:586–590Google Scholar
  34. Linder, M., De Burlet, G., Sudaka, P. 1984. Transport of glutathione by intestinal brush border membrane vesicles.Biochem. Biophys. Res. Commun. 123:929–936Google Scholar
  35. Maede, Y., Kasai, N., Taniguchi, N. 1982. Hereditary high concentration of glutathione in canine erythrocytes associated with high accumulation of glutamate, glutamine, and aspartate.Blood 59:883–889Google Scholar
  36. Makowske, M., Christensen, H.N. 1982. Contrasts in transport systems for anionic amino acids in hepatocytes and a hepatoma cell line HTC.J. Biol. Chem. 257:5663–5670Google Scholar
  37. McIntyre, T.M., Curthoys, N.P. 1979. Comparison of the hydrolytic and transfer activities of rat renal γ-glutamyltranspeptidase.J. Biol. Chem. 254:6499–6504Google Scholar
  38. McIntyre, T.M., Curthoys, N.P. 1980. The interorgan metabolism of glutathione.Int. J. Biochem. 12:545–551Google Scholar
  39. Meister, A. 1984. New developments in glutathione metabolism and their potential application in therapy.Hepatology 4:739–742Google Scholar
  40. Meister, A., Anderson, M.E. 1983. Glutathione.Annu. Rev. Biochem. 52:711–760Google Scholar
  41. Meister, A., Tate, S.S. 1976. Glutathione and related γ-glutamyl compounds: Biosynthesis and utilization.Annu. Rev. Biochem. 45:559–604Google Scholar
  42. Novogrodsky, A., Tate, S.S., Meister, A. 1976. γ-Glutamyl transpeptidase, a lymphoid cell-surface marker: Relationship to blastogenesis, differentiation, and neoplasia.Proc. Natl. Acad. Sci. USA 73:2414–2418Google Scholar
  43. Orrenius, S., Ormstad, K., Thor, H., Jewell, S.A. 1983. Turnover and functions of glutathione studied with isolated hepatic and renal cells.Fed. Proc. 42:3177–3188Google Scholar
  44. Rankin, B.B., Curthoys, N.P. 1982. Evidence for the renal paratubular transport of glutathione.FEBS Lett. 147:193–196Google Scholar
  45. Richman, P.G., Meister, A. 1975. Regulation of γ-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione.J. Biol. Chem. 250:1422–1426Google Scholar
  46. Saetre, R., Rabenstein, D.L. 1978. Determination of cysteine in plasma and urine and homocysteine in plasma by high-pressure liquid chromatography.Anal. Biochem. 90:684–692Google Scholar
  47. Sies, H., Akerboom, T.P.M. 1984. Glutathione disulfide (GSSG) efflux from cells and tissues.Methods Enzymol. 105:445–451Google Scholar
  48. Takada, A., Bannai, S. 1984. Transport of cystine in isolated rat hepatocytes in primary culture.J. Biol. Chem. 259:2441–2445Google Scholar
  49. Tateishi, N., Higashi, T., Naruse, A., Nakashima, K., Shiozaki, H., Sakamoto, Y. 1977. Rat liver glutathione: Possible role as a reservoir of cysteine.J. Nutr. 107:51–60Google Scholar
  50. Tateishi, N., Higashi, T., Shinya, S., Naruse, A., Sakamoto, Y. 1974. Studies on the regulation of glutathione level in rat liver.J. Biochem. 75:93–103Google Scholar
  51. Thor, H., Moldéus, P., Orrenius, S. 1979. Metabolic activation and hepatotoxicity. Effect of cysteine, N-acetylcysteine, and methionine on glutathione biosynthesis and bromobenzene toxicity in isolated rat hepatocytes.Arch. Biochem. Biophys. 192:405–413Google Scholar
  52. Young, J.D., Ellory, J.C., Tucker, E.M. 1976. Amino acid transport in normal and glutathione-deficient sheep erythrocytes.Biochem. J. 154:43–48Google Scholar
  53. Young, J.D., Jones, S.E.M., Ellory, J.C. 1980. Amino acid transport in human and in sheep erythrocytes.Proc. R. Soc. London B 209:355–375Google Scholar
  54. Young, J.D., Tucker, E.M. 1983. Erythrocyte glutathione deficiency in sheep.In: Functions of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects. A. Larsson, S. Orrenius, A. Holmgren, and B. Mannervik, editors. pp. 373–384. Raven, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Shiro Bannai
    • 1
    • 2
  • Noriko Tateishi
    • 1
    • 2
  1. 1.Division of BiochemistryTsukuba University School of Medicine, Sakura-muraIbarakiJapan
  2. 2.Department of Biochemistry, Institute for Cancer ResearchOsaka University Medical School, Fukushima-kuOsakaJapan

Personalised recommendations