The Journal of Membrane Biology

, Volume 99, Issue 1, pp 41–49 | Cite as

Current-voltage relationships of potassium channels in the plasmalemma ofAcetabularia

  • A. Bertl
  • D. Gradmann
Articles

Summary

The outer membrane of mechanically prepared protoplasmic droplets fromAcetabularia mediterranea has been investigated by patch-clamp techniques. These membranes are shown to consist of physiologically intact plasmalemma. With the Cl pump inhibited, microscopic currents through K+-selective channels were studied. These currents compare well with macroscopic K+ currents as previously determined by standard microelectrode techniques and tracer flux measurements. There is about one K+ channel per μm2 in the plasmalemma. The current-voltage relationship (I−V curve) of the main open channel (channel A) is sigmoid over a voltage range between about −100 and +100 mV with saturation currents of about ±10 pA. A second species (or different state of channel A) of K+-selective channels (channel B) differs from channel A by smaller saturation currents (about ±7 pA) and a much smaller open probability. The open probability of channel A increases from almost zero at large negative voltages to about 1/2 at large positive voltages. Taking the closed times into account, the mean steady-stateI–V curve of channel A displays outward rectification about the equilibrium voltage for K+ and negative slope conductance at larger negative voltages. The open channelI–V curve of the open channels A and B, the changes of theI–V curve of the open channel A upon variation of the external K+ concentration, as well as the mean steady-stateI–V curves of channel A are described by simple reaction kinetic models, the parameters of which are determined to fit the experimental data. The results are discussed with respect to data from other K+ channels in plants and with respect to regulation of the cytoplasmic K+ concentration inAcetabularia.

Key Words

open channel voltage gating outward rectification reaction kinetic model uniport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beilby, M.J. 1985. Potassium channels atChara plasmalemma.J. Exp. Bot. 36:228–239Google Scholar
  2. Bentrup, F.W., Bogarten-Boekels, M., Hoffmann, B., Gogarten, J.P., Baumann, C. 1986. ATP-dependent acidification and tonoplast hyperpolarization in isolated vacuoles from green suspension cells ofChenopodium rubrum L.Proc. Natl. Acad. Sci. USA 83:2431–2433Google Scholar
  3. Coleman, H.A. 1986. Chloride currents inChara—A patch-clamp study.J. Membrane Biol. 93:55–61Google Scholar
  4. Coleman, H.A., Walker, N.A. 1984. Patch-clamp recording from a plant cell.Proc. Aust. Physiol. Pharmacol. Soc. 15:196P Google Scholar
  5. Felle, H. 1981. A study of the current-voltage relationships of the electrogenic active and passive membrane elements inRiccia fluitans.Biochim. Biophys. Acta 646:151–160Google Scholar
  6. Fisahn, J., Hansen, U.-P., Gradmann, D. 1986. Determination of charge, stoichiometry and reaction constants fromI–V curve studies on a K+ transporter inNitella.J. Membrane Biol. 94:245–252Google Scholar
  7. Gradmann, D. 1970. Einfluss von Licht, Temperatur und Aussenmedium auf das elektrische Verhalten vonAcetabularia.Planta 93:323–353Google Scholar
  8. Gradmann, D. 1975. Analog circuit of theAcetabularia membrane.J. Membrane Biol. 25:183–208Google Scholar
  9. Gradmann, D. 1976. “Metabolic” action potentials inAcetabularia.J. Membrane Biol. 29:23–45Google Scholar
  10. Gradmann, D. 1984. Electrogenic Cl pump in the marine algaAcetabularia.In: Chloride Transport Coupling in Biological Membranes and Epithelia. G.A. Gerencser, editor. pp. 13–61. Elsevier Science, AmsterdamGoogle Scholar
  11. Gradmann, D., Bentrup, F.W. 1970. Light-induced membrane potential changes and rectification inAcetabularia.Naturwissenschaften 57:46–47Google Scholar
  12. Gradmann, D., Klieber, H.G., Hansen, U.P. 1987. Reaction kinetic parameters for ion transport from steady state current-voltage curves.Biophys. J. 51:569–585Google Scholar
  13. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. 391:85–100Google Scholar
  14. Hamill, O.P., Sakmann, B. 1981. Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells.Nature (London) 294:462–464Google Scholar
  15. Hansen, U.-P., Gradmann, D., Sanders, D., Slayman, C.L. 1981. Interpretation of current-voltage relationships for “active” ion transport systems: I. Steady-state reaction-kinetic analysis of class-1 mechanisms.J. Membrane Biol. 63:165–190Google Scholar
  16. Hedrich, R., Flügge, U.I., Fernandez, J.M. 1986. Patch-clamp studies of ion transport in isolated plant vacuoles.FEBS Lett. 240:228–232Google Scholar
  17. Hope, A.B., Walker, N.A. 1975. The Physiology of Giant Algal Cells. Cambridge University Press, LondonGoogle Scholar
  18. Latorre, R., Alvarez, O. 1981. Voltage-dependent channels in planar lipid bilayer membranes.Physiol. Rev. 61:77–150Google Scholar
  19. Lühring, H. 1986. Recording of single K+ channels in the membrane of cytoplasmic drop ofChara australis.Protoplasma 133:19–28Google Scholar
  20. Lüttke, A., Grawe, F. 1984. A synthetic growth medium for the green algaAcetabularia mediterranea.Br. Phycol. J. 19:23–29Google Scholar
  21. Mummert, H. 1979. Transportmechanismen für K+, Na+ and Cl in stationären und dynamischen Zuständen beiAcetabularia. Dissertation. University of Tübingen, TübingenGoogle Scholar
  22. Mummert, H., Gradmann, D. 1976. Correlation of potassium fluxes and electrical properties of the membrane ofAcetabularia.Biochim. Biophys. Acta 443:443–450Google Scholar
  23. Sachs, F. 1983. Is the acetylcholine receptor a unit-conductance channel?In: Single-channel recording. B. Sakmann and E. Neher, editors. pp. 365–376. Plenum, New YorkGoogle Scholar
  24. Saddler, H.D.W. 1970a. The ionic relations ofAcetabularia mediterranea.J. Exp. Bot. 21:345–359Google Scholar
  25. Saddler, H.D.W. 1970b. The membrane potential ofAcetabularia mediterranea.J. Gen. Physiol. 55:802–821Google Scholar
  26. Sakmann, B., Neher, E. 1983. Single-Channel Recording. Plenum, New YorkGoogle Scholar
  27. Schroeder, J.I., Hedrich, R., Fernandez, J.M. 1984. Potassium-selective single channels in guard cell protoplasts ofVicia faba.Nature (London) 312:361–362Google Scholar
  28. Wendler, S., Zimmermann, U., Bentrup, F.-W. 1983. Relationship between cell turgor pressure, electrical membrane pobential, and chloride efflux inAcetabularia mediterranea.J. Membrane Biol. 72:75–84Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • A. Bertl
    • 1
  • D. Gradmann
    • 1
  1. 1.Pflanzenphysiologisches Institut und Botanischer Garten der Universität GöttingenGöttingenFederal Republic of Germany

Personalised recommendations