Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Glutaraldehyde fixation preserves the permeability properties of the ADH-induced water channels

  • 47 Accesses

  • 19 Citations


Unidirectional and net water movements were determined, in frog urinary bladders, before and after glutraldehyde fixation. Experiments were performed in three experimental conditions: 1) in nonstimulated preparations, 2) after the action of antidiuretic hormone (ADH) and 3) in nonstimulated preparations to which amphotericin B was incorporated from the luminal bath. As previously observed for net water fluxes, the increase in the unidirectional water movement induced by ADH was well preserved by glutaraldehyde fixation. After correction for the effects of unstirred layers and nonosmotic pathways, the observed correlation between the ADH-induced increases in the osmotic (Pf) and diffusional (Pd) permeability coefficients was not modified by the fixative action (before glutaraldehyde: slope 11.19,r:0.87±0.07;n=12; after glutaraldehyde: slope 10.67,r:0.86±0.04,n=39). In the case of amphotericin B, ΔPfPd=3.08 (r: 0.83±0.08), a value similar to that observed in lipid bilayers or in nonfixed toad urinary bladders. It is concluded that 1) The experimental approach previously employed to study water channels in artificial lipid membranes and in amphibian urinary bladders, can be applied to the glutaraldehyde-fixed frog urinary bladder. 2) Glutaraldehyde fixation does not modify the permeability properties of the ADH-induced water channels. 3) Any contribution of exo-endocytic processes or cell regulatory mechanisms to the observed permeability parameters can probably be excluded. 4) Glutaraldehyde-fixed preparations are a good model to characterize these water pathways.

This is a preview of subscription content, log in to check access.


  1. 1.

    Bourguet, J., Jard, S. 1984. Un dispositif automatique de mesure et d'enregistrement du flux net d'eau à travers la peau et la vessie des amphibiens.Biochim. Biophys. Acta 88:442–444

  2. 2.

    Carasso, N., Favard, D., Bourguet, J., Jard, S. 1966. Rôle du flux net d'eau dans les modifications ultrastructurales de la vessie de grenouille stimulée par l'ocytocine.J. Microscopie 5:519–522

  3. 3.

    Chevalier, J., Bourguet, J., Hugon, J.S. 1974. Membrane associated particles. Distribution in frog urinary bladder epithelium at rest and after oxytocin treatment.Cell Tissue Res. 152:129–140

  4. 4.

    Eggena, P. 1972. Glutaraldehyde-fixation method for determining the permeability to water of the toad urinary bladder.Endocrinology 91:240–246

  5. 5.

    Eggena, P. 1972. Temperature dependence of vasopressin action on the toad bladder.J. Gen. Physiol. 59:519–533

  6. 6.

    Eggena, P. 1972. Osmotic regulation of toad bladder responsiveness to neurohypophyseal hormones.J. Gen. Physiol. 60:665–678

  7. 7.

    Eggena, P. 1983. Effect of glutaraldehyde on hydrosmotic response of toad bladder to vasopressin.Am. J. Physiol. 244:C37-C43

  8. 8.

    Ellis, S.J., Kachadorian, W.A., Discala, V.A. 1980. Effect of osmotic gradient on ADH-induced intramembranous particle aggregates in toad bladder.J. Membrane Biol. 52:181–184

  9. 9.

    Finkelstein, A., Holz, R. 1973. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.In: Membranes a Series of Advances. G. Eisenman, editor. Vol. 2. pp. 377–408. M. Dekker. New York

  10. 10.

    Ginzburg, B.Z., Katchalsky, A. 1963. The frictional coefficients of the flow of non-electrolytes througth artificial membranes.J. Gen. Physiol. 47:403–418

  11. 11.

    Hardy, M., Dibona, D. 1982. Microfilaments and the hydrosmotic action of vasopressin in toad urinary bladder.Am. J. Physiol. 243:C200-C204

  12. 12.

    Hays, R.M., Franki, N. 1970. The role of water diffusion in the action of vasopressin.J. Membrane Biol. 2:263–276

  13. 13.

    Hebert, S.C., Schafer, J.A., Andreoli, T.E. 1981. The effect of antidiuretic hormone (ADH) on solute and water transport in the mammalian nephron.J. Membrane Biol. 58:1–19

  14. 14.

    Jard, S., Bourguet, J., Carasso, N., Favard, P. 1966. Action de divers fixateurs sur la perméabilité et l'ultrastructure de la vessie de grenouille.J. Microscopie 5:31–50

  15. 15.

    Kachadorian, W.A., Muller, J., Rudich, S.W., Discala, V.A. 1979. Temperature dependance of ADH-induced water flow and intramembranous particle aggregates in toad bladder.Science 205:910–913

  16. 16.

    Kachadorian, W.A., Wade, J.B., Discala, V.A. 1975. Vasopressin-induced structural change in toad bladder luminal membrane.Science 190:67–69

  17. 17.

    Levine, S.D., Jacoby, M., Finkelstein, A. 1984. The water permeability of toad urinary bladder: I. Permeability of barriers in series with the luminal membrane.J. Gen. Physiol. 83:529–541

  18. 18.

    Levine, S.D., Jacoby, M., Finkelstein, A. 1984. The water permeability of toad urinary bladder: The value ofPf/Pd (w) for the antidiuretic hormone-induced water permeation pathway.J. Gen. Physiol. 83:543–561

  19. 19.

    Levine, S.D., Kachadorian, W.A. 1981. Barriers to water flow in vasopressin-treated toad urinary bladder.J. Membrane Biol. 61:135–139

  20. 20.

    Moura, T.F., Macey, R.I., Chien, D.Y., Karan, D., Santos, H. 1984. Thermodynamics of all-or-non water channel closure in red cells.J. Membrane Biol. 81:105–111

  21. 21.

    Muller, J., Kachadorian, W.A., Discala, V.A. 1980. Evidence that ADH stimulated intramembranous particle aggregates are transferred from cytoplasmic to luminal membranes in the toad bladder epithelial cells.J. Cell Biol. 85:83–95

  22. 22.

    Parisi, M., Bourguet, J. 1983. The single-file hypothesis and the water channels induced by antidiuretic hormone.J. Membrane Biol. 71:189–193

  23. 23.

    Parisi, M., Bourguet, J. 1984. Effects of cellular acidification on ADH-induced intramembranous particle aggregates.Am. J. Physiol. 246:C157-C159

  24. 24.

    Parisi, M., Bourguet, J., Ripoche, P., Chevalier, J. 1979. Simultaneous minute by minute determination of unidirectional and net water fluxes in frog urinary bladder: A reexamination of the two barriers in series hypothesis.Biochim. Biophys. Acta 556:509–523

  25. 25.

    Parisi, M., Montoreano, R., Chevalier, J., Bourguet, J. 1981. Cellular pH and water permeability control in frog urinary bladder: A possible action on the water pathway.Biochim. Biophys. Acta 648:267–274

  26. 26.

    Parisi, M., Ripoche, P., Prevost, G., Bourguet, J. 1981. Regulation by ADH and cellular osmolarity of water permeability in frog urinary bladder: A time course study.Proc. N. Y. Acad. Sci. 372:144–162

  27. 27.

    Parker, J.C. 1984. Glutaraldehyde fixation of sodium transport in dog red blood cells.J. Gen. Physiol. 84:789–803

  28. 28.

    Pietras, R.J., Wright, E.M. 1975. The membrane action of antidiuretic hormone (ADH) on toad urinary bladder.J. Membrane Biol. 22:107–123

  29. 29.

    Rosenberg, P.A., Finkelstein, A. 1960. Interaction of ions and water in gramicidin A channels. Streaming potentials across lipid bilayer membranes.J. Gen. Physiol. 72:327–340

  30. 30.

    Rosenberg, P.A., Finkelstein, A. 1980. Water permeability of gramicidin-A treated lipid bilayer membranes.J. Gen. Physiol. 72:341–350

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parisi, M., Merot, J. & Bourguet, J. Glutaraldehyde fixation preserves the permeability properties of the ADH-induced water channels. J. Membrain Biol. 86, 239–245 (1985). https://doi.org/10.1007/BF01870603

Download citation

Key Words

  • water channels
  • glutaraldehyde fixation
  • frog urinary bladder
  • unstirred layers
  • osmotic and diffusional permeabilities
  • Rana esculenta