The Journal of Membrane Biology

, Volume 77, Issue 3, pp 265–275

Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion

  • Shinpei Ohki


Fusion of phosphatidylserine vesicles induced by divalent cations, temperature and osmotic pressure gradients across the membrane was studied with respect to variations in vesicle size. Vesicle fusion was followed by two different methods: 1) the Tb/DPA fusion assay, whereby the fluorescent intensity upon mixing of the internal aqueous contents of fused lipid vesicles was monitored, and 2) measurement of the changes in turbidity of the vesicle suspension due to vesicle fusion. It was found that the threshold concentration of divalent cations necessary to induce vesicle fusion depended on the size of vesicles; as the diameter of the vesicle increased, the threshold value increased and the extent of fusion became less. For the osmotic pressure-induced vesicle fusion, the larger the diameter of vesicles, the smaller was the osmotic pressure gradient required to induce membrane fusion. Divalent cations, temperature increase and vesicle membrane expansion by osmotic pressure gradient all resulted in increase in surface energy (tension) of the membrane. The degree of membrane fusion correlated with the corresponding surface energy changes of vesicle membranes due to the above fusion-inducing agents. The increase in surface energy of 9.5 dyn/cm from the reference state corresponded to the threshold point of phosphatidylserine membrane fusion. An attempt was made to explain the factors influencing fusion phenomena on the basis of a single unifying theory.

Key Words

vesicle fusion surface energy divalent cations osmotic pressure gradient temperature membrane curvature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahkong, Q.F., Cramp, F.C., Fisher, D., Howell, J.I., Tampion, W., Verrinder, M., Lucy, J.A. 1973. Chemically-induced and thermally-induced cell fusion: Lipid-lipid interaction.Nature (London) 242:215–217Google Scholar
  2. 2.
    Ahkong, Q.F., Fisher, D., Tampion, W., Lucy, J.A. 1975. Mechanism of cell fusion.Nature (London) 253:194–195Google Scholar
  3. 3.
    Bearer, E.L., Düzgünes, N., Friend, D.S., Papahadjopoulos, D. 1982. Fusion of phospholipid vesicles arrested by quickfreezing: The question of lipidic particles as intermediates in membrane fusion.Biochim. Biophys. Acta 693:93–98Google Scholar
  4. 4.
    Breisblatt, W., Ohki, S. 1975. Fusion in phospholipid spherical membranes. I. Effect of temperature and lysolecithin.J. Membrane Biol. 23:385–401Google Scholar
  5. 5.
    Breisblatt, W., Ohki, S. 1976. Fusion in phospholipid sperical membranes. II. Effect of cholesterol, divalent ions and pH.J. Membrane Biol. 29:127–146Google Scholar
  6. 6.
    Chaudhury, M., Ohki, S. 1981. Correlation between membrane expansion and temperature-induced membrane fusion.Biochim. Biophys. Acta 642:365–374Google Scholar
  7. 7.
    Cohen, F.S., Zimmerberg, J., Finkelstein, A. 1980. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes: II. Incorporation of a vesicular membrane marker into the planar membrane.J. Gen. Physiol. 75:251–270Google Scholar
  8. 8.
    Cullis, P.R., Hope, M.J. 1978. Effect of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion.Nature (London) 271:672–674Google Scholar
  9. 9.
    Cullis, P.R., Verkleij, A.J. 1979. Modulation of membrane structure by Ca2+ and dibucaine as detected by31P NMR.Biochim. Biophys. Acta 552:546–551Google Scholar
  10. 10.
    Davies, J.T., Rideal, E.K. 1961. Interfacial Phenomena. p. 17. Academic, New York-LondonGoogle Scholar
  11. 11.
    De Gier, J., Mandersloot, J.G., Van Deenen, L.L.M. 1968. Lipid composition and permeability of liposomes.Biochim. Biophys. Acta 150:666–675Google Scholar
  12. 12.
    Dodge, J.T., Mitchell, C., Hanahan, D.J. 1963. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes.Arch. Biochem. Biophys. 100:119–130Google Scholar
  13. 13.
    Düzgünes, N., Ohki, S. 1977. Calcium-induced interaction of phospholipid vesicles and bilayer lipid membranes.Biochim. Biophys. Acta 467:301–308Google Scholar
  14. 14.
    Ekerdt, R., Papahadjopoulos, D. 1982. Intermembrane contact affects calcium binding to phospholipid vesicles.Proc. Natl. Acad. Sci. USA 79:2273–2277Google Scholar
  15. 15.
    Hui, S.W., Stewart, T.P., Boni, L.T., Yeagle, P.L. 1981. Membrane fusion through point defects in bilayers.Science 212:921–923Google Scholar
  16. 16.
    Jacobson, K., Papahadjopoulos, D., 1975. Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH and concentration of bivalent cations.Biochemistry 14:152–161Google Scholar
  17. 17.
    Knutton, S. 1979. Studies of membrane fusion. III. Fusion of erythrocytes with polyethylene glycol.J. Cell Sci. 36:61–72Google Scholar
  18. 18.
    Liao, M.J., Prestegard, J.H. 1979. Fusion of phosphotidic acid-phosphatidylcholine mixed lipid vesicles.Biochim. Biophys. Acta 550:157–173Google Scholar
  19. 19.
    Lichtenberg, D., Freire, E., Schmidt, C.F., Barenholz, Y., Felgner, P.L., Thompson, T.E. 1981. Effect of surface curvature on stability, thermodynamic behavior, and osmotic activity of dipolmitolphosphatidylcholine single lamellar.Biochemistry 20:3462–3467Google Scholar
  20. 20.
    Lucy, J.A. 1970. The fusion of biological membranes.Nature (London) 227:814–817Google Scholar
  21. 21.
    Miller, C., Arvan, P., Telford, J.N., Racker, E. 1976. Ca2+-induced fusion of proteoliposomes: Dependence on transmembrane osmotic gradient.J. Membrane Biol. 30:271–282Google Scholar
  22. 22.
    Ohki, S. 1982. A mechanism of divalent ion-induced phosphatidylserine membrane fusion.Biochim. Biophys. Acta 689:1–11Google Scholar
  23. 23.
    Ohki, S., Aono, O. 1970. Phospholipid bilayer-micelle transformation.J. Colloid Interface Sci. 32:270–281Google Scholar
  24. 24.
    Ohki, S., Düzgünes, N. 1979. Divalent cation-induced interaction of phospholipid vesicle and monolayer membranes.Biochim. Biophys. Acta 552:438–449Google Scholar
  25. 25.
    Papahadjopoulos, D., Poste, G., Schaffer, B.E., Vail, W.J. 1974. Membrane fusion and molecular segregation in phospholipid vesicles.Biochim. Biophys. Acta,352:10–28Google Scholar
  26. 26.
    Papahadjopoulos, D., Vail, W.J., Jacobson, K., Poste, G. 1975. Cochleate lipid cylinders: Formation by fusion of unilamellar lipid vesicles.Biochim. Biophys. Acta 394:483–491Google Scholar
  27. 27.
    Papahadjopoulos, D., Vail, W.J., Newton, C., Nir, S., Jacobson, K., Poste, G., Lazo, R. 1977. Studies on membrane fusion: III. The role of calcium-induced phase changes.Biochim. Biophys. Acta,465:579–598Google Scholar
  28. 28.
    Portis, A., Newton, C., Pangborn, W., Papahadjopoulos, D. 1979. Studies on the mechanism of membrane fusion: Evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+ and inhibition by spectrin.Biochemistry 18:780–790Google Scholar
  29. 29.
    Poste, G., Nicolson, G.L., editors. 1978. Membrane Fusion. Elsevier/North-Holland, Amsterdam-New YorkGoogle Scholar
  30. 30.
    Rouser, G., Bauman, A.J., Kritchevsky, G., Heller, D., O'Brien, J.S. 1961. Quantitative chromatographic fractionation of complex lipid mixtures: Brain lipids.J. Am. Oil Chem. Soc. 38:544–555Google Scholar
  31. 31.
    Schullery, S.E. Schmidt, C.F., Felgner, P., Tillack, T.W., Thompson, T.E. 1980. Fusion of dipalmitoyl-phosphatidylcholine vesicles.Biochemistry 19:3919–3923Google Scholar
  32. 32.
    Szoka, F., Jr., Papahadjopoulos, D. 1978. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation.Proc. Natl. Acad. Sci. USA 75:4194–4198Google Scholar
  33. 33.
    Tien, T., Diana, A.L. 1967. Some physical properties of biomolecular lipid membranes produced from new lipid solutions.Nature (London) 215:1199–1200Google Scholar
  34. 34.
    Träuble, H., Eibl, H. 1974. Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment.Proc. Natl. Acad. Sci. USA 711:214–219Google Scholar
  35. 35.
    Verkleij, A.J., Mombers, C., Gerritsen, W.J., Leunissen-Bijvelt, L., Cullis, P.R. 1979. Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized in freeze fracturing.Biochim. Biophys. Acta 555:358–361Google Scholar
  36. 36.
    Verklejj, A.J., Van Echteld, C.J.A., Gerritsen, W.J., Cullis, P.R., DeKruijff, B. 1980. The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal HII transitions.Biochim. Biophys. Acta 600:620–624Google Scholar
  37. 37.
    Whittaker, V.P., Barker, L.A. 1972. Subcellular fractionation of brain tissue.Methods Neurochem. 2:12–45Google Scholar
  38. 38.
    Wilschut, J., Düzgünes, N., Fraley, R., Papahadjopoulos, D. 1980. Studies on the mechanism of membrane fusion: Kinetics of Ca ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents.Biochemistry 19:6011–6021Google Scholar
  39. 39.
    Wilschut, J., Düzgünes, N., Papahadjopoulos, D., 1981. Calcium/magnesium specifccity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature.Biochemistry 20:3126–3133Google Scholar
  40. 40.
    Wilschut, J., Papahadjopoulos, D. 1979. Ca2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents.Nature (London) 281:690–692Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Shinpei Ohki
    • 1
  1. 1.Department of Biophysical SciencesState University of New York at BuffaloBuffalo

Personalised recommendations