Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Divalent cation effects on membrane bending in heated erythrocytes

  • 20 Accesses

  • 2 Citations

Abstract

The thermal fragmentation of human erythrocytes involves either surface wave growth and membrane externalization at the cell rim or membrane internalization at the cell dimple. In symmetrical monovalent electrolytes an increase in membrane internalization at the cell dimple correlates with the decrease in zeta potential arising from surface charge (sialic acid residue) depletion. The influence of divalent cations on thermal fragmentation is examined in this work. The erythrocyte zeta potential decreased when divalent cations replaced some Na+ in the cell-suspending phase. The incidence of membrane internalization increased in rank order Ca2+>Ba2+>Mg2+≥Sr2+. Calcium continued to influence the thermal fragmentation of cells highly depleted of sialic acid, suggesting that the ion also interacted with membrane sites other than sialic acid. The divalent cation influence on cell fragmentation was shown to be greater than that due to zeta potential decrease alone. This conclusion was supported by the observation that the divalent cation-induced changes in zeta potential showed much less cation specificity than did the changes induced in the thermal fragmentation pattern. The result implies that the specificity of the divalent cation effects was due to interactions within the erythrocyte shear layer. The possibility that the interaction is with membrane lipids is examined.

This is a preview of subscription content, log in to check access.

References

  1. Allan, D.; Billah, M.M.; Finean, J.B.; Michell, R.H. 1975.Nature 258, 348–349.

  2. Borgers, M.; Thone, F.J.M.; Xhonneuz, B.J.M.; Clerck, F.F.P. 1983.J. Histol. Cytol. 31, 1109–1116.

  3. Brandts, J.F.; Erickson, L.; Lysko, K.; Schwartz, A.T.; Taverna, R.D. 1977.Biochemistry 16, 3450–3454.

  4. Coakley, W.T.; Deeley, J.O.T. 1980.Biochim. Biophys. Acta 602, 355–375.

  5. Cohen, C.M.; Solomon, A.K. 1976.J. Membr. Biol. 29, 345–372.

  6. Colbow, K.; Avrmovic-Zikic, O.; Wessel, S. 1981.J. Colloid Interface Sci. 82, 233–239.

  7. Deeley, J.O.T.; Coakley, W.T. 1983.Biochim. Biophys. Acta 727, 293–302.

  8. Donath, E., Pastushenko, V. 1980.Bioelectrochem. Bioenerg. 7, 31–40.

  9. Doulah, F.A.; Coakley, W.T.; Tilley, D. 1984.J. Biol. Phys. In Press.

  10. Edmondson, J.W.; Li, T.K. 1978.Biochim. Biophys. Acta 443, 106–113.

  11. Hammoudah, M.M.; Nir, S.; Bentz, J.; Mayhew, E.; Steward, T.P.; Hui, S.W.; Kurland, R.J. 1981.Biochim. Biophys. Acta 645, 102–114.

  12. Hauser, H.; Hinckley, C.C.; Krebbs, J.; Levine, B.A.; Phillipps, M.C.; Williams, R.J.P. 1977.Biochim. Biophys. Acta 468, 364–377.

  13. Hoffman, J.F.; Laris, P.C. 1974.J. Physiol. (London)239, 514–552.

  14. Lau, A.; McLaughlin, A.; McLaughlin, S. 1981.Biochim. Biophys. Acta 645, 279–292.

  15. Lis, L.J.; Rand, R.P.; Parsegian, V.A. 1980. In:Bioelectrochemistry, Ions, Surface Membranes. Advances in Chemistry Series 188 (M. Blank, Ed.), American Chemical Society, Washington, pp. 41–47.

  16. Long, C.; Mouat, B. 1971.Biochem. J. 123, 829–836.

  17. McLaughlin, A.; Grathwohl, C.; McLaughlin, S. 1978.Biochim. Biophys. Acta 513, 338–357.

  18. Newton, C.; Pangborn, W.; Nir, S.; Papahadjopoulos, D. 1978.Biochim. Biophys. Acta 506, 281–287.

  19. Ohki, S.; Kurland, R. 1981.Biochim. Biophys. Acta 645, 170–176.

  20. Op Den Kamp, J.A.F. 1981. In:Membrane Structure J.B. Finean and R.H. Michell, Eds.), Elsevier, (Amsterdam, pp. 83–126.

  21. Papahadjopoulos, D. 1968.Biochim. Biophys. Acta 163, 240–254.

  22. Schultze, M. 1865.Arch. Mikrosk. Anat. 1, 1–42.

  23. Sheetz, M.P. 1977. In:Cell Shape and Surface Architecture (J.P. Revel, U. Henning and C.P. Fox, Eds.), Alan R. Liss, New York, pp. 559–567.

  24. Sokal, R.R.; Rohlf, F.J. 1981.Biometry, Freeman, San Francisco.

  25. Wagner, S.; Keith, A.; Sniper, W. 1980.Biochim. Biophys. Acta 600, 367–375.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coakley, W.T., Doulah, F.A. Divalent cation effects on membrane bending in heated erythrocytes. J Biol Phys 12, 85–92 (1984). https://doi.org/10.1007/BF01870558

Download citation

Keywords

  • Surface Wave
  • Zeta Potential
  • Sialic Acid
  • Shear Layer
  • Divalent Cation