The Journal of Membrane Biology

, Volume 5, Issue 3, pp 277–296 | Cite as

The thickness, composition and structure of some lipid bilayers and natural membranes

  • R. Fettiplace
  • D. M. Andrews
  • D. A. Haydon
Article

Summary

It has been shown that the capacitance, thickness and composition of black lipid films may depend strongly on the hydrocarbon solvent used in their formation. By the use of n-hexadecane, films have been formed which contain effectively no solvent and which are comparable to the leaflets of the mesomorphic phase of the pure lipid. These films have capacitances of ca. 0.6 μF/cm2 and hydrocarbon thicknesses of ca. 31 Å. Thinner black films of higher capacitances are also described.

The capacitances of biological membranes are, in contrast, nearer to 1 μF/cm2, and it is suggested that the hydrocarbon region in these membranes may often be thinner than in the lipid leaflets. This suggestion is consistent with some X-ray and lipid composition data. It is pointed out that if the membranes contain abnormally thin lipid leaflets, the area per polar head group of the phospholipid must be increased, and that hydrocarbon is thereby exposed to the aqueous phases. Non-polar protein residues could then interact with these hydrocarbon areas, thus tending to stabilize the expanded leaflet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, D. M. 1970. Ph. D. Thesis, University of Cambridge.Google Scholar
  2. 2.
    —, Haydon, D. A., Manev, E. D. 1970. The composition and energy relationships for some thin lipid films, and the chain conformation in monolayers at liquid-liquid interfaces.Special Disc. Faraday Soc. No. 1, p. 46.Google Scholar
  3. 3.
    Aveyard, R., Haydon, D. A. 1965. Thermodynamic properties of aliphatic hydrocarbon/ water interfaces.Trans. Faraday. Soc. 61:2255.Google Scholar
  4. 4.
    Bar, R. S., Deamer, D. W., Cornwell, D. G. 1966. Surface area of human erythrocyte lipids: Re-investigation of experiments on plasma membrane.Science 153:1010.PubMedGoogle Scholar
  5. 5.
    Blaurock, A. E., Wilkins, M. H. F. 1969. Structure of frog photoreceptor membranes.Nature 223:906.PubMedGoogle Scholar
  6. 6.
    Borggreven, J. M. P. M., Daemen, F. J. M., Bonting, S. L. 1970. Biochemical aspects of the visual process. VI. The lipid composition of native and hexane-extracted cattle rod outer segments.Biochim. Biophys. Acta 202:374.PubMedGoogle Scholar
  7. 7.
    Brooks, J. H., Pethica, B. A. 1964. Properties of ionized monolayers. Part 6. Film pressures for ionized spread monolayers at the heptane/water interface.Trans. Faraday Soc. 60:208.Google Scholar
  8. 8.
    Chapman, D., Kamat, V. B., De Gier, J., Penkett, S. A. 1968. Nuclear magnetic resonance studies of erythrocyte membranes.J. Mol. Biol. 31:101.Google Scholar
  9. 9.
    Cherry, R. J., Chapman, D. 1969. Optical properties of black lecithin films.J. Mol. Biol. 40:19.PubMedGoogle Scholar
  10. 10.
    Cook, G. M. W., Redwood, W. R., Taylor, A. R., Haydon, D. A. 1968. The molecular composition of black hydrocarbon films in aqueous solutions.Kolloid Zeit. 227:28.Google Scholar
  11. 11.
    Corkill, J. M., Goodman, J. F., Walker, T. 1967. Partial molar volumes of surfaceactive agents in aqueous solution.Trans. Faraday Soc. 63:768.Google Scholar
  12. 12.
    Everitt, C. T., Haydon, D. A. 1968. Electrical capacitance of a lipid membrane separating two aqueous phases.J. Theoret. Biol. 18:371.Google Scholar
  13. 13.
    Falk, G., Fatt, P. 1968. Passive electrical properties of rod outer segments.J. Physiol. 198:627.PubMedGoogle Scholar
  14. 14.
    Fricke, H. 1931. The electric conductivity and capacity of disperse systems.Physics 1:106.Google Scholar
  15. 15.
    Grant, E. H. 1966. Dielectric dispersion in bovine serum albumen.J. Mol. Biol. 19:133.PubMedGoogle Scholar
  16. 16.
    Gulik-Krzywicki, T., Sctecter, E., Luzzati, V., Faure, M. 1969. Interactions of proteins and lipids: Structure and polymorphism of protein-lipid-water phases.Nature 223:1116.PubMedGoogle Scholar
  17. 17.
    Hanai, T., Haydon, D. A., Taylor, J. 1964. An investigation by electrical methods of lecithin-in-hydrocarbon films in aqueous solutions.Proc. Roy. Soc. (Lond.) A 281:377.Google Scholar
  18. 18.
    ——— 1964a. Polar group orientation and the electrical properties of lecithin bimolecular leaflets.J. Theoret. Biol. 9:278.Google Scholar
  19. 19.
    ——— 1965b. The influence of lipid composition and of some adsorbed proteins on the capacitance of black hydrocarbon membranes.J. Theoret. Biol. 9:422.Google Scholar
  20. 20.
    Hodgkin, A. L., Huxley, A. F., Katz, B. 1952. Measurement of current-voltage relations in the membrane of the giant axon ofLoligo.J. Physiol. 116:424.PubMedGoogle Scholar
  21. 21.
    Huxley, A. F., Stämpfli, R. 1949. Evidence for saltatory conduction in peripheral myelinated nerve fibres.J. Physiol. 108:315.Google Scholar
  22. 22.
    Isemura, T., Yamashita, T. 1959. Surface chemistry of synthetic protein analogues. VII. Polytyrosine and its related polypeptides.Bull. Chem. Soc. Japan 32:1.Google Scholar
  23. 23.
    Landholt, H. H., Börnstein, R. 1959. Zahlenwerte und Funktionen, vol. II, p. 6. Springer-Verlag, Berlin.Google Scholar
  24. 24.
    Lecuyer, H., Dervichian, D. G. 1969. Structure of aqueous mixtures of lecithin and cholesterol.J. Mol. Biol. 45:39.PubMedGoogle Scholar
  25. 25.
    Lenard, J., Singer, S. J. 1966. Protein conformation in cell membrane preparations as studied by optical rotatory dispersion and circular dichroism.Proc. Nat. Acad. Sci. 56:1828.Google Scholar
  26. 26.
    Llopis, J. 1968. The polypeptide chain at liquid interfaces. Proc. 5th Int. Congress on Surface Activity (Barcelona). Vol. III, pp. 1–18. Ediciones Unidas, Barcelona.Google Scholar
  27. 27.
    Malcolm, B. R. 1968. Molecular structure and deuterium exchange in monolayers of synthetic polypeptides.Proc. Roy. Soc. (Lond.) A 305:363.Google Scholar
  28. 28.
    Moore, J. W., Narahashi, T., Shaw, T. I. 1967. An upper limit to the number of sodium channels in nerve membrane.J. Physiol. 188:99.PubMedGoogle Scholar
  29. 29.
    O'Brien, J. S., Sampson, F. L. 1965. Lipid composition of the normal human brain: gray matter, white matter and myelin.J. Lipid Res 6:537.PubMedGoogle Scholar
  30. 30.
    —— 1965b. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter and myelin.J. Lipid Res. 6:545.PubMedGoogle Scholar
  31. 31.
    Palti, Y., Adelman, J. W. 1969. Measurement of axonal membrane conductances and capacity by means of a varying potential control voltage clamp.J. Membrane Biol. 1:431.Google Scholar
  32. 32.
    Reiss-Husson, F. 1967. Structure des phases liquide-cristallines de différents phospholipides, monoglycérides, sphingolipides, anhydres on en présence d'eau.J. Mol. Biol. 25:363.PubMedGoogle Scholar
  33. 33.
    Rouser, G., Nelson, G. J., Fleischer, S., Simon, G. 1968. Lipid composition of animal cell membranes, organelles and organs.In: Biological Membranes, Physical Fact and Function. D. Chapman, editor. p. 1. Academic Press, London, New York.Google Scholar
  34. 34.
    Schwan, H. P., Carstensen, E. L. 1957. Dielectric properties of the membrane of lysed erythrocytes.Science 125:985.PubMedGoogle Scholar
  35. 35.
    Small, D. M. 1967. Phase equilibria and structure of dry and hydrated egg lecithin.J. Lipid Res. 8:551.PubMedGoogle Scholar
  36. 36.
    Tasaki, I. 1955. New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber.Amer. J. Physiol. 181:639.PubMedGoogle Scholar
  37. 37.
    Taylor, R. E. 1965. Impedance of the squid axon membrane.J. Cell. Comp. Physiol. 66:21.Google Scholar
  38. 38.
    Wallach, D. F. H., Zahler, P. H. 1966. Protein conformation in cellular membranes.Proc. Nat. Acad. Sci. 56:1552.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1971

Authors and Affiliations

  • R. Fettiplace
    • 1
  • D. M. Andrews
    • 1
  • D. A. Haydon
    • 1
  1. 1.Physiological LaboratoryCambridge UniversityCambridgeEngland

Personalised recommendations