Advertisement

The Journal of Membrane Biology

, Volume 39, Issue 2–3, pp 219–232 | Cite as

Morphological factors influencing transepithelial permeability: A model for the resistance of theZonula Occludens

  • Philippa Claude
Article

Summary

Epithelial cells are joined at their apical surfaces byzonulae occludentes. Claude and Goodenough (1973) demonstrated a correlation between the structure of thezonula occludens as seen in freeze-fracture preparations and the passive electrical permeability of several simple epithelia. In epithelia with high transepithelial resistance, thezonula occludens consisted of many strands. In epithelia with low transepithelial resistance thezonula occludens was much reduced, sometimes consisting of only one strand.

Evidence is reviewed here that indicates that in a number of simple epithelia the structure of thezonula occludens is largely responsible for the magnitude of transepithelial conductance. An equation is derived relating transepithelial junctional resistance to the number of junctional strands:R=R min p −n whereR is the transepithelial resistance of thezonula occludens,Rmin is the minimum resistance of the junction (as when there areno strands in the zonula occludens),p is the probability a given strand is “open” andn is the number of strands in the junction. Using published experimental values ofR andn for different epithelia, the calculated value ofp was found to be as high as 0.4, which suggests that the strands in thezonula occludens are remarkably labile.

Other morphological parameters relevant to transepithelial permeability are also considered, such as the width and depth of the intercellular spaces, and the size of the epithelial cells themselves.

Keywords

Epithelial Cell Human Physiology Intercellular Space Morphological Parameter Apical Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barry, R.J.C., Smyth, D.H., Wright, E.M.. 1965. Short circuit current and solute transfer by rat jejunum.J. Physiol. (London) 181:410Google Scholar
  2. 2.
    Berridge, M.J., Oschman, J.L. 1972.Transporting Epithelia. Academic Press, New YorkGoogle Scholar
  3. 3.
    Bindslev, N., Tormey, J. McD., Wright, E.M. 1974. The effects of electrical and osmotic gradients on lateral intercellular spaces and membrane conductance in a low resistance epithelium.J. Membrane Biol. 19:357Google Scholar
  4. 4.
    Boulpaep, E.L. 1971. Electrophysiological properties of the proximal tubule: Importance of cellular and intercellular transport pathways. In: Electrophysiology of Epithelial Cells. Symposia Medica Hoechst, 1970. G. Giebisch, editor. Schattauer Verlag, StuttgartGoogle Scholar
  5. 5.
    Boulpaep, E.L., Seely, J.F. 1971. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney.Am. J. Physiol. 221:1084Google Scholar
  6. 6.
    Civan, M.M., Frazier, H.S. 1968. The site of the stimulatory action of vasopressin on sodium transport in toad bladder.J. Gen. Physiol. 51:589Google Scholar
  7. 7.
    Claude, P. 1968. An electron microscopic study of the urinary tubules ofNecturus maculosus. Ph.D. Thesis, University of Pennsylvania. University Microfilms, (No. 69–15,044) Ann ArborGoogle Scholar
  8. 8.
    Claude, P., Goodenough, D.A. 1973. Fracture faces ofzonulae occludentes from “tight” and “leaky” epithelia.J. Cell Biol. 58:390Google Scholar
  9. 9.
    Dalton, A.J., Haguenau, F. 1967. Ultrastructure of the Kidney. Academic Press, New York and LondonGoogle Scholar
  10. 10.
    DiBona, D.R., Civan, M.M. 1973. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways.J. Membrane Biol. 12: 101Google Scholar
  11. 11.
    Erlij, D., Martínez-Palomo, A. 1972. Opening of tight junctions in frog skin by hypertonic urea solutions.J. Membrane Biol. 9:229Google Scholar
  12. 12.
    Friend, D.S., Gilula, N.B. 1972. Variations in tight and gap junctions in mammalian tissues.J. Cell Biol. 53:758Google Scholar
  13. 13.
    Frizzell, R.A., Schultz, S.G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences.J. Gen. Physiol. 59:318Google Scholar
  14. 14.
    Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259Google Scholar
  15. 15.
    Frömter, E., Diamond, J. 1972. Route of passive ion permeation in epithelia.Nature, New Biol. 235:9Google Scholar
  16. 16.
    Graham, R.C., Karnovsky, M.J. 1966. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique.J. Histochem. Cytochem. 14:291Google Scholar
  17. 17.
    Higgins J.T., Jr., Cesaro, L., Gebler, B., Frömter, E. 1975. Electrical properties of amphibian urinary bladder epithelia.Pfluegers Arch. 358:41Google Scholar
  18. 18.
    Humbert, F., Grandchamp, A., Pricam, C., Perrelet, A., Orci, L. 1976. Morphological changes in tight junctions ofNecturus maculosus proximal tubules undergoing saline diuresis.J. Cell Biol. 69:90Google Scholar
  19. 19.
    Katz, B., Miledi, R. 1972. The statistical nature of the acetylcholine potential and its molecular components.J. Physiol. (London) 224:665Google Scholar
  20. 20.
    Kaye, G.I., Wheeler, H.O., Whitlock, R.T., Lane, N. 1966. Fluid transport in the rabbit gallbladder. A combined physiological and electron microscope study.J. Cell Biol. 30: 237Google Scholar
  21. 21.
    Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41Google Scholar
  22. 22.
    Machen, T.E., Erlij, D., Wooding, F.B.P. 1972. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine.J. Cell Biol. 54:302Google Scholar
  23. 23.
    Magleby, K.L., Stevens, C.F. 1972. A quantitative description of end-plate currents.J. Physiol. (London) 223:173Google Scholar
  24. 24.
    Martínez-Palomo, A., Erlij, D. 1975. Structure of tight junctions in epithelia with different permeability.Proc. Nat. Acad. Sci. (USA) 72:4487Google Scholar
  25. 25.
    Miller, F. 1960. Hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney.J. Biophys. Biochem. Cytol. 8:689Google Scholar
  26. 26.
    Moreno, J.H., Diamond, J. M. 1974. Discrimination of monovalent inorganic cations by “tight” junctions of gallbladder epithelium.J. Membrane Biol. 15:277Google Scholar
  27. 27.
    Pricam, C., Humbert, F., Perrelet, A., Orci, L. 1974. A freeze-etch study of the tight junctions of the rat kidney tubules.Lab. Invest. 30:286Google Scholar
  28. 28.
    Rawlins, F.A., González, E., Pérez-González, M., Whittembury, G. 1975. Effect of transtubular osmotic gradients on the paracellular pathway in toad kidney proximal tubule.Pfluegers Arch. 353:287Google Scholar
  29. 29.
    Reuss, L., Finn, A.L. 1974. Passive electrical properties of toad urinary bladder epithelium: Intercellular coupling and transepithelial cellular and shunt conductance.J. Gen. Physiol. 64:1Google Scholar
  30. 30.
    Rodewald, R. 1973. Intestinal transport of antibodies in the newborn rat.J. Cell Biol. 58:189Google Scholar
  31. 31.
    Smulders, A.P., Tormey, J. McD., Wright, E.M. 1972. The effect of osmotically induced water flows on the permeability and ultrastructure of the rabbit gallbladder.J. Membrane Biol. 7:164Google Scholar
  32. 32.
    Staehelin, L.A. 1974. Structure and function of intercellular junctions.Int. Rev. Cytol. 39:191Google Scholar
  33. 33.
    Wade, J.B., Karnovsky, M.J. 1974. Fracture faces of osmotically disruptedzonulae occludentes.J. Cell Biol. 62:344Google Scholar
  34. 34.
    Walser, M. 1970. Role of edge damage in sodium permeability of toad bladder and a means of avoiding it.Am. J. Physiol. 219:252Google Scholar
  35. 35.
    Wilson, T.H. 1962. Intestinal Absorption. W.B. Saunders, PhiladelphiaGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1978

Authors and Affiliations

  • Philippa Claude
    • 1
  1. 1.Regional Primate Research CenterUniversity of WisconsinMadison

Personalised recommendations