Advertisement

The Journal of Membrane Biology

, Volume 34, Issue 1, pp 383–408 | Cite as

Transport number effects in the transverse tubular system and their implications for low frequency impedance measurement of capacitance of skeletal muscle fibers

  • Peter H. Barry
Article

Summary

It has been shown in an earlier paper that the slow transient decrease in conductance, somtimes referred to as “creep”, obtained with small-to-medium hyperpolarizing current or voltage pulses is due to K+ transport number differences across the walls of the transverse tubular system. Using the same basic numerical analysis and the parameters already obtained experimentally in the previous paper for frog skeletal muscle in a sulphate Ringer's solution, this paper predicts the equivalent membrane capacitance and dynamic resistance due to transport number effects for very low amplitude and low frequency sinusoidal currents from the phase lag of the voltage response behind the current. Such sinusoidal currentper se give rise to an equivalent capacitance which increased from less than 1μF·cm−2 at 10 Hz to about 16μF·cm−2 at 0.01 Hz and to an equivalent dynamic membrane resistance which increases from its instantaneous slope resistance value of 11.7kωcm2 at 10 Hz to about 16kωcm2 at 0.01 Hz. Similar small sinusoidal components of current superimposed on depolarizing and hyperpolarizing pulses (25–45 mV) give rise to even greater “capacitances” at low frequencies (e.g., 24–28μF·cm−2 at 0.01 Hz). The response due to large sinusoidal currents was also investigated. These transport number effects help to explain the small discrepancies obtained by some workers between experimental and predicted values of skeletal muscle fiber impedances measured in the 1–10 Hz range and would seem to be critical for the interpretation of any skeletal muscle fiber impedance studies done at frequencies less than 1 Hz.

Keywords

Skeletal Muscle Fiber Transport Number Instantaneous Slope Membrane Capacitance Voltage Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R. H., Chandler, W. K., Hodgkin, A. L. 1969. The kinetics of mechanical activation in frog muscle.J. Physiol. (London) 204:207Google Scholar
  2. Adrian, R. H., Chandler, W. K., Hodgkin, A. L. 1970a. Voltage clamp experiments in striated muscle fibres.J. Physiol. (London) 208:607Google Scholar
  3. Adrian, R. H., Chandler, W. K., Hodgkin, A. L. 1970b. Slow changes in potassium permeability in skeletal muscle.J. Physiol. (London) 208:645Google Scholar
  4. Adrian, R. H., Freygang, W. H. 1962. The potassium and chloride conductance of frog muscle membrane.J. Physiol. (London) 163:61Google Scholar
  5. Almers, W. 1972a. Potassium conductance changes in skeletal muscle and the potassium concentration in the transverse tubules.J. Physiol. (London) 225:33Google Scholar
  6. Almers, W. 1972b. The decline of potassium permeability during extreme hyperpolarisation in frog skeletal muscle.J. Physiol. (London) 225:57Google Scholar
  7. Barry, P. H. 1976. Transport number effects in the transverse tubular system of muscle and their effects on low frequency A/C impedance analysis.Proc. Aust. Physiol. Pharmacol. Soc. 7:4P Google Scholar
  8. Barry, P. H., Adrian, R. H. 1973. Slow conductance changes due to potassium depletion in the transverse tubules of frog muscle fibers during hyperpolarizing pulses.J. Membrane Biol. 14:243Google Scholar
  9. Barry, P. H., Hope, A. B. 1969a. Electroosmosis in membranes: Effects of unstirred layers and transport numbers. I. Theory.Biophys. J. 9:700PubMedGoogle Scholar
  10. Barry, P. H., Hope, A. B. 1969b. Electroosmosis in membranes: Effects of unstirred layers and transport numbers. II. Experimental.Biophys. J. 9:729PubMedGoogle Scholar
  11. Coster, H. G. L., Smith, J. R. 1974a. The effect of pH on the low frequency capacitance of the membranes ofChara corallina.In: Membrane Transport in Plants. Pp. 154–161. U. Zimmermann and J. Dainty, editors. Springer-Verlag, HeidelbergGoogle Scholar
  12. Coster, H. G. L., Smith, J. R. 1974b. The molecular organisation of bimolecular lipid membranes. A study of the low frequency Maxwell-Wagner impedance dispersion.Biochim. Biophys. Acta 373:151PubMedGoogle Scholar
  13. Dewhurst, D. J. 1960. Concentration polarisation in plane membrane-solution systems.Trans. Faraday Soc. 56:599Google Scholar
  14. Eisenberg, R. S., Gage, P. W. 1969. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers.J. Gen. Physiol. 53:279PubMedGoogle Scholar
  15. Endo, M. 1966. The entry of fluorescent dyes into the sarcotubular system of the frog muscle.J. Physiol. (London) 185:224Google Scholar
  16. Huxley, H. F. 1964. Evidence for continuity between the central elements of the triads and the extracellular space in frog sartorius muscle.Nature (London) 202:1067Google Scholar
  17. Katz, B. 1949. Les constantes électriques de la membrane du muscle.Arch. Sci. Physiol. 3:285Google Scholar
  18. McCracken, D. D. 1965. A Guide to Fortran IV Programming. John Wiley and Sons, New YorkGoogle Scholar
  19. Mobley, B. A., Eisenberg, B. R. 1975. Sizes of components in frog skeletal muscle measured by methods of sterology.J. Gen. Physiol. 66:31PubMedGoogle Scholar
  20. Page, S. G. 1964. The organisation of the sarcoplasmic reticulum in frog muscle.J. Physiol. (London) 175:10P Google Scholar
  21. Peachey, L. D. 1965. The sarcoplasmic reticulum and the transverse tubules of the frog's sartorius.J. Cell. Biol. 25:209PubMedGoogle Scholar
  22. Ralston, A. 1965. A First Course in Numerical Analysis. McGraw-Hill, New YorkGoogle Scholar
  23. Schaefer, H., Scholmerich, P., Haass, P. 1939. Der Elektrotonus und die Erregungsgesetze des Muskels.Pfluegers Arch. Gesamte Physiol. 241:310Google Scholar
  24. Segal, J.R. 1967. Electrical capacitance of ion-exchanger membranes.J. Theor. Biol. 14:11PubMedGoogle Scholar
  25. Sokolnikoff, I. S., Redheffer, R. M. 1958. Mathematics of Physics and Modern Engineering. McGraw-Hill, New YorkGoogle Scholar
  26. Tasaki, I., Hagiwara, S. 1957. Capacity of muscle fiber membrane.Am. J. Physiol. 188:423PubMedGoogle Scholar
  27. Valdiosera, R., Clausen, C., Eisenberg, R. S. 1974a. Circuit models of the passive electrical properties of frog skeletal muscle fibers.J. Gen. Physiol. 63:432CrossRefPubMedGoogle Scholar
  28. Valdiosera, R., Clausen, C., Eisenberg, R.S. 1974b. Impedance of frog skeletal muscle fibers in various solutions.J. Gen. Physiol. 63:460PubMedGoogle Scholar
  29. Wedner, H. J., Diamond, J. M. 1969. Contributions of unstirred-layer effects to apparent electrokinetic phenomena in the gall bladder.J. Membrane Biol. 1:92Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • Peter H. Barry
    • 1
  1. 1.School of Physiology and PharmacologyUniversity of New South WalesKensingtonAustralia

Personalised recommendations