The Journal of Membrane Biology

, Volume 15, Issue 1, pp 159–192 | Cite as

Shape of the hydrophobic barrier of phospholipid bilayers (Evidence for water penetration in biological membranes)

  • O. H. Griffith
  • P. J. Dehlinger
  • S. P. Van


Previous work has shown that there is a small solvent effect on the electron spin resonance spectra of nitroxide spin labels. The aim of this paper is to develop a semiquantitative treatment of the solvent effects and to use this treatment to estimate the shape of the hydrophobic barrier (i.e., polarity profile) of lipid bilayers.

In this semiquantitative treatment of solvent effects, the total effect on the isotropic14N coupling constant, ΔA, is expressed as a sum of terms associated with van der Waals interactions, hydrogen bonding, the charged double layer of phospholipid polar groups and the membrane potential. The magnitude of ΔA as a function of the electric field is estimated with Hückel molecular orbital theory and, independently, using the Onsager model. With these relations, estimates of the relative importance of the various solvent effect terms are obtained from accurate ESR measurements on dilute solutions of di-t-butyl nitroxide in thirty-three solvents and calculations of the electric field produced by the charged double layer and the membrane potential.

To estimate the shape of the hydrophobic barrier of lipid bilayers, fatty acids andl-α-lecithins with doxyl (i.e., 4′, 4′-dimethyloxazolidine-N-oxyl) labels bonded to various positions along the lipid chains were diffused into phospholipid vesicles and membranes (from the calf liver microsomal fraction). The shape of the hydrophobic barrier is plotted as a polarity index operationally defined in terms of the ΔA of the lipid spin labels. The effect of the charged double layers is less important than water penetration except when the spin label is within a few Angstroms of the charged groups. Any effects of a membrane potential on ΔA are insignificant. A comparison of ESR spectra indicates that significant water penetration into the bilayer occurs in both the pure lipid bilayers and in the membrane preparations.


Electron Spin Resonance Lipid Bilayer Electron Spin Resonance Spectrum Solvent Effect Nitroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayscough, P. B., Sargent, F. P. 1966. Electron spin resonance studies of radicals and radical-ions in solution. Part V. Solvent effects on the spectra of mono- and di-phenyl nitric oxide.J. Chem. Soc. (London) B. 1966:907Google Scholar
  2. Berliner, L. J. 1970. Refinement and location of hydrogen atoms in nitroxide 2,2,6,6-tetramethyl-4-piperidinol-1-oxyl.Acta Cryst. B26:1198Google Scholar
  3. Birrell, G. B., Van, S. P., Griffith, O. H. 1973. Electron spin resonance of spin labels in organic inclusion crystals. Models for anisotropic motion in biological membranes.J. Amer. Chem. Soc. 95:2451Google Scholar
  4. Boeyens, J. C. A., Kruger, G. J. 1970. Remeasurements of the structure of potassium 2,2,5,5-tetramethyl-3-carboxypyrroline-1-oxyl.Acta Cryst. B26:668Google Scholar
  5. Branton, D., Deamer, D. W. 1972. Membrane Structure. Springer-Verlag, New YorkGoogle Scholar
  6. Briere, R., Lemaire, H., Rassat, A. 1965. Nitroxydes. XV. Synthese et etude de radicaux libres stables piperidiniques et pyrrolidinique.Bull. Soc. Chim. France 32:3273Google Scholar
  7. Briere, R., Rassat, A., Rey, P., Tchoubar, B. 1966. Nitroxydes. XXI. Mise en evidence par resonance paramagnetique electronique de l'effet specifique des sels sur la solvation des radicaux nitroxydes.J. Chim. Phys. 63:1575Google Scholar
  8. Brown, D. G., Maier, T., Drago, R. S. 1971. Cobalt (II) complexes of the free-radical ligand di-tert-butyl nitroxide.Inorg. Chem. 10:2804Google Scholar
  9. Capiomont, A. 1972. Structure cristalline du radical nitroxyde: suberate de di-tetramethyl-2,2,6,6-piperidinyl-4-oxyle 1.Acta Cryst. B28:2298Google Scholar
  10. Caspar, D. L. D., Kirschner, D. A. 1971. Myelin membrane structure at 10 Å resolution.Nature, New Biol. 231:46Google Scholar
  11. Cohen, A. H., Hoffman, B. M. 1973. Hyperfine interactions in perturbed nitroxides.J. Amer. Chem. Soc. 95:2061Google Scholar
  12. Daudel, R., Lefebvre, R., Moser, C. 1959. Quantum Chemistry, Methods and Applications. Wiley-Interscience, New YorkGoogle Scholar
  13. Davson, H., Danielli, J. F. 1943. The Permeability of Natural Membranes. Cambridge University Press, New YorkGoogle Scholar
  14. Eichberg, J., Whittaker, V. P., Dawson, R. M. C. 1964. Distribution of lipids in subcellular particles of guinea-pig brain.Biochem. J. 92:91PubMedGoogle Scholar
  15. Folch, J., Lees, M., Stanley, G. H. S. 1957. A simple method for the isolation and purification of total lipids from animal tissues.J. Biol. Chem. 226:497PubMedGoogle Scholar
  16. Griffith, O. H. 1965. ESR and electronic structure of the RCHOR' ether radicals.J. Chem. Phys. 42:2651Google Scholar
  17. Griffith, O. H., Libertini, L. J., Birrell, G. B. 1971. The role of lipid spin labels in membrane biophysics.J. Phys. Chem. 75:3417PubMedGoogle Scholar
  18. Hall, J. E., Meade, C. A., Szabo, G. 1973. A barrier model for current flow in lipid bilayer membranes.J. Membrane Biol. 11:75Google Scholar
  19. Hubbell, W. L., McConnell, H. M. 1968. Spin-label studies of the excitable membranes of nerve and muscle.Proc. Nat. Acad. Sci. 61:12PubMedGoogle Scholar
  20. Hubbell, W. L., McConnell, H. M. 1971. Molecular motion in spin-labeled phospholipids and membranes.J. Amer. Chem. Soc. 93:314Google Scholar
  21. Jost, P. C., Griffith, O. H., Capaldi, R. A., Vanderkooi, G. 1973. Evidence for boundary lipid in membranes.Proc. Nat. Acad. Sci. 70:480PubMedGoogle Scholar
  22. Jost, P., Libertini, L. J., Hebert, V. C., Griffith, O. H. 1971a. Lipid spin labels in lecithin multilayers. A study of motion along fatty acid chains.J. Mol. Biol. 59:77CrossRefPubMedGoogle Scholar
  23. Jost, P., Waggoner, A. S., Griffith, O. H. 1971b. Spin labeling and membrane structure.In: The Structure and Function of Biological Membranes. L. I. Rothfield, editor. Ch. 3, p. 84. Academic Press Inc., New YorkGoogle Scholar
  24. Kabankin, A. S., Zhidomirov, G. M., Buchachenko, A. L. 1973. Structure of complexes of radicals with organic ligands.J. Magn. Reson. 9:199Google Scholar
  25. Karplus, M., Fraenkel, G. K. 1961. Theoretical interpretation of carbon-13 hyperfine interactions in electron spin resonance spectra.J. Chem. Phys. 35:1312Google Scholar
  26. Kawamura, T., Matsunami, S., Yonezawa, T. 1967. Solvent effects on theg-value of di-t-butyl nitric oxide.Bull. Chem. Soc. Japan 40:1111Google Scholar
  27. Lajzerowicz-Bonneteau, J. 1968. Structure du radical nitroxide tetramethyl-2,2,6,6-piperidinol-4-oxyle-1.Acta Cryst. B24:196Google Scholar
  28. Lemaire, H., Rassat, A. 1964. Structure hyperfine due a l'azote dans les radicaux nitroxydes.J. Chim. Phys. 61:1580Google Scholar
  29. Libertini, L. J., Griffith, O. H. 1970. Orientation dependence of the electron spin resonance spectrum of di-t-butyl nitroxide.J. Chem. Phys. 53:1359Google Scholar
  30. Libertini, L. J., Waggoner, A. S., Jost, P. C., Griffith, O. H. 1969. Orientation of lipid spin labels in lecithin multilayers.Proc. Nat. Acad. Sci. 64:13PubMedGoogle Scholar
  31. Lim, Y. Y., Drago, R. S. 1971. Donor properties of a free-radical base.J. Amer. Chem. Soc. 93:891Google Scholar
  32. McConnell, H. M., McFarland, B. G. 1972. The flexibility gradient in biological membranes.Ann. N.Y. Acad. Sci. 195:207PubMedGoogle Scholar
  33. Murata, Y., Mataga, N. 1971. ESR and optical studies on the EDA complexes of di-t-butyl N-oxide radical.Bull. Chem. Soc. Japan 44:354Google Scholar
  34. Mysels, K. J. 1959. Introduction to Colloid Chemistry. Ch. 15. Wiley-Interscience, New YorkGoogle Scholar
  35. Neumcke, B., Läuger, P. 1969. Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equations.Biophys. J. 9:1160PubMedGoogle Scholar
  36. Omura, T., Siekevitz, P., Palade, G. E. 1967. Turnover of constitutents of the endoplasmic reticulum membranes of rat hepatocytes.J. Biol. Chem. 242:2389PubMedGoogle Scholar
  37. Onsager, L. 1936. Electric moments of molecules in liquids.J. Amer. Chem. Soc. 58:1486Google Scholar
  38. Pauling, L. 1960. The Nature of the Chemical Bond, Third Edition. p. 90. Cornell University Press, Ithaca, New YorkGoogle Scholar
  39. Perrin, D. D. 1963. Buffers of low ionic strength for spectrophotometric pK determinations.Aust. J. Chem. 16:572Google Scholar
  40. Rottem, S., Hubbell, W. J., Hayflick, L., McConnell, H. M. 1970. Motion of fatty acid spin labels in the plasma membrane of mycoplasma.Biochim. Biophys. Acta 219:104PubMedGoogle Scholar
  41. Rozantsev, E. G. 1970. Free Nitroxyl Radicals. Plenum Press, New YorkGoogle Scholar
  42. Rozantsev, E. G., Sholle, V. D. 1971. Progress in the chemistry of nitroxyl radicals.Uspekhi Khimii 40:417. Eng. trans.:Russ. Chem. Rev. 40:233Google Scholar
  43. Seelig, J. 1970. Spin label studies of oriented smectic liquid crystals (A model system for bilayer membranes).J. Amer. Chem. Soc. 92:3881Google Scholar
  44. Seelig, J., Limacher, H., Bader, P. 1972. Molecular architecture of liquid crystalline bilayers.J. Amer. Chem. Soc. 94:6364Google Scholar
  45. Selinger, Z., Lapidot, Y. 1966. Synthesis of fatty acid anhydrides by reaction with dicyclohexylcarbodiimide.J. Lipid Res. 7:174PubMedGoogle Scholar
  46. Singer, S. J. 1971. The molecular organization of biological membranes.In: The Structure and Function of Biological Membranes. L. I. Rothfield, editor. Ch. 4, p. 146. Academic Press Inc., New YorkGoogle Scholar
  47. Singer, S. J., Nicolson, G. L. 1972. The fluid mosaic model of the structure of cell membranes.Science 175:720PubMedGoogle Scholar
  48. Steck, T. L., Fairbanks, G. F., Wallach, D. F. H. 1971. Disposition of the major proteins in the isolated erythrocyte membrane. Proteolytic dissection.Biochemistry 10:2617PubMedGoogle Scholar
  49. Streitwieser, A. 1961. Molecular Orbital Theory. p. 47. John Wiley & Sons (Wiley-Interscience), New YorkGoogle Scholar
  50. Sysoeva, N. A., Stepanyants, A. U., Buchachenko, A. L. 1968. Paramagnetic shift of solvent protons in the presence of organic radicals.Z. Struk. Khimii 9:311. Eng. trans.:J. Struct. Chem. 9:248Google Scholar
  51. Thompson, T. E., Henn, F. A. 1970. Experimental phospholipid model membranes.In: Membranes of Mitochondria and Chloroplasts. E. Racker, editor. Ch. 1, p. 1. Van Nostrand Reinhold Co., New YorkGoogle Scholar
  52. Vanderkooi, G., Green, D. W. 1971. New insights into biological membrane structure.Bio Science 21:409Google Scholar
  53. Vasserman, A. M., Buchachenko, A. L. 1966. The EPR spectra and electronic structure of nitric oxide radicals.Z. Struk. Khimii 7:673. Eng. trans.:J. Struct. Chem. 7:633Google Scholar
  54. Waggoner, A. S., Griffith, O. H., Christensen, C. R. 1967. Magnetic resonance of nitroxide probes in micelle-containing solutions.Proc. Nat. Acad. Sci. 57:1198Google Scholar
  55. Waggoner, A. S., Keith, A. D., Griffith, O. H. 1968. ESR of solubilized long-chain nitroxides.J. Phys. Chem. 72:4129Google Scholar
  56. Waggoner, A. S., Kingzett, T. J., Rottschaefer, S., Griffith, O. H., Keith, A. D. 1969. A spin-labeled lipid for probing biological membranes.Chem. Phys. Lipids 3:245PubMedGoogle Scholar
  57. Weast, R. C., editor. 1972. Handbook of Chemistry and Physics, 53rd Edition. The Chemical Rubber Co., Cleveland OhioGoogle Scholar
  58. Wertz, J. E., Bolton, J. R. 1972. Electron Spin Resonance. p. 125. McGraw-Hill Book Co., Inc., New YorkGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1974

Authors and Affiliations

  • O. H. Griffith
    • 1
  • P. J. Dehlinger
    • 1
  • S. P. Van
    • 1
  1. 1.Institute of Molecular Biology and Department of ChemistryUniversity of OregonEugene

Personalised recommendations