The Journal of Membrane Biology

, Volume 12, Issue 1, pp 69–88 | Cite as

A study of passive potassium efflux from human red blood cells using ion-specific electrodes

  • F. M. Morel


Using ion-specific electrodes, the potassium leakage induced by ouabain in human erythrocytes can be measured continuously and precisely near physiological conditions. Upon small additions of isotonic sucrose solution to a suspension of red cells in physiological saline the passive potassium efflux increases proportionally to the chloride ratio. The same result is obtained upon addition of hypertonic sucrose solution, suggesting that neither osmolarity nor intracellular concentrations have any influence on the passive potassium efflux. The independence of the potassium efflux and osmolarity can be verified by addition of a penetrating substance like glucose to the cell suspension. Adding water or hypertonic sodium chloride solution shows that the potassium efflux increases slightly in more concentrated salt solutions. Inasmuch as it can be interpreted as a pure ionic strength effect, this result supports the hypothesis of independence of potassium efflux and intracellular concentrations. The results of this investigation together with other studies show that the passive permeability of the human red blood cell to potassium depends uniquely on the membrane potential near physiological conditions, while it depends on parameters such as pH or concentrations for large membrane potentials. This suggests that two different mechanisms of transport might be involved: one would control the permeability under normal conditions; the other would represent a leak through the route normally used by anions and become important only under extreme conditions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barr, L. 1965. Membrane potential profiles and the Goldman equation.J. Theoret. Biol. 9:351.Google Scholar
  2. 2.
    Cotterrell, D., Whittam, R. 1971. The influence of the chloride gradient across red cell membranes on sodium and potassium movements.J. Physiol. 214:509.Google Scholar
  3. 3.
    Deuticke, B. 1970. Anion permeability of the red blood cell.Naturwissenschaften 57:172.Google Scholar
  4. 4.
    Donlon, J.A. 1968. Passive cation efflux from human erythrocytes suspended in low ionic strength hypertonic media. Ph. D. Thesis. University of Rochester, Rochester, New York.Google Scholar
  5. 5.
    Donlon, J. A., Rothstein, A. 1969 The cation permeability of erythrocytes in low ionic strength media of various tonicities.J. membrane Biol. 1:37.Google Scholar
  6. 6.
    Gary Bobo, C.M., Solomon, A.K. 1968. Properties of hemoglobin solutions in red cells.J. Gen. Physiol. 52:825.Google Scholar
  7. 7.
    Helfferich, F. 1962. Ion Exchange. McGraw-Hill Book Co., Inc., New York.Google Scholar
  8. 8.
    Hoffman, J. F., Ingram, C. J. 1968. Cation transport and the binding ofT. Ouabain to intact human red blood cells.In: Stoffwechsel und Membranpermeabilität von Erythrocyten und Thrombocyten. E. Deutsch, E. Gerlach and K. Moser, editors. p. 420. Georg Thieme Verlag, Stuttgart.Google Scholar
  9. 9.
    Knauf, P. A., Rothstein, A. 1971. Chemical modification of membranes I & II.J. Gen. Physiol. 58:190.Google Scholar
  10. 10.
    La Celle, P. L., Passow, H. 1966. Effects of variations of pH and ionic strength on anion permeability of the erythrocyte membrane.Pflüg.Arch. Ges. Physiol. 291:R15.Google Scholar
  11. 11.
    La Celle, P. L., Rothstein, A. 1966. The passive permeability of the red blood cell to cations.J. Gen. Physiol. 50:171.Google Scholar
  12. 12.
    Lepke, S., Passow, H. 1971. The permeability of the human red blood cell to sulfate ions.J. Membrane Biol. 6:158.Google Scholar
  13. 13.
    Maizels, M., Patterson, J. H. 1940. Suvival of stored blood after transfusion.Lancet 239II:417.Google Scholar
  14. 14.
    Morel, F. M.. 1971. A study of passive potassium efflux from human red blood cells using ion specific electrodes. Ph. D. Thesis, Part I. California Institute of Technology, Pasadena, California.Google Scholar
  15. 15.
    Passow, H. 1965. Passive ion permeability and the concept of fixed charges.Proc. XXIII Int. Physiol. Sci. Congr., Tokyo.Int. Congr. Sci., Excerpta Med., Amst. 87:555.Google Scholar
  16. 16.
    Passow, H. 1969. Passive ion permeability of the red blood cell. An assessment of the scope and limitations of the fixed charge concept.Prog. Biophys. Mol. Biol. 19: Pt. II, 423.Google Scholar
  17. 17.
    Poensgen, J., Passow, H. 1971. Action of 1-fluoro-2,4-dinitrobenzene on passive ion permeability of the human red blood cell.J. Membrane Biol. 6:210.Google Scholar
  18. 18.
    Ponder, E. 1948. Haemolysis and Related Phenomena. Greene and Stratton, New York.Google Scholar
  19. 19.
    Post, R. L., Albright, C. D., Dayani, K. 1967. Resolution of pump and leak components of sodium and potassium ion transport in human erythrocyte.J. Gen. Physiol. 50:1201.Google Scholar
  20. 20.
    Rothstein, A. 1968. Membrane permeability of erythrocytes. Stoffwechsel und Membranpermeabilität von Erythrocyten und Thrombocyten. E. Deutsch, E. Gerlach and K. Moser, editors. p. 407. Georg Thieme Verlag, Stuttgart.Google Scholar
  21. 21.
    Savitz, D., Sidel, V. W., Solomon, A. K. 1964. Osmotic properties of human red cells.J. Gen. Physiol. 48:79.Google Scholar
  22. 22.
    Teorell, T. 1953. Transport processes and electrical phenomena in ionic membranes.Prog. Biophys. Biophys. Chem. 3:305.Google Scholar
  23. 23.
    Tosteson, D. C. 1959. Halide transport in red blood cells.Acta Physiol. Scand. 46:19.Google Scholar
  24. 24.
    Tosteson, D. C., Cook, P., Andreoli, T. E., Tieffenberg, M. 1967. The effect of valinomycin on potassium and sodium permeability of HK and LK sheep red cells.J. Gen. Physiol. 50:2513.Google Scholar
  25. 25.
    Whittam, R. 1964. Transport and Diffusion in Red Blood Cells. Williams and Williams, Baltimore, Maryland.Google Scholar
  26. 26.
    Wilbrandt, W., Schatzmann, H. J. 1960. Changes in the passive permeability of erythrocytes in low electrolyte media.In: CIBA Foundation Study Group Symposium No. 5. Regulation of the Inorganic Ion Content of Cells. London, Churchill, p. 34.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1973

Authors and Affiliations

  • F. M. Morel
    • 1
  1. 1.Department of EngineeringCalifornia Institute of TechnologyPasadena

Personalised recommendations