The Journal of Membrane Biology

, Volume 1, Issue 1, pp 402–430 | Cite as

Cyclodepsipeptides as chemical tools for studying ionic transport through membranes

  • M. M. Shemyakin
  • Yu. A. Ovchinnikov
  • V. T. Ivanov
  • V. K. Antonov
  • E. I. Vinogradova
  • A. M. Shkrob
  • G. G. Malenkov
  • A. V. Evstratov
  • I. A. Laine
  • E. I. Melnik
  • I. D. Ryabova
Article

Summary

This paper reports a study of the chemistry of valinomycin, enniatins and related membrane-active depsipeptides that increase alkali metal ion permeability of model and biological membranes. The antimicrobial activity of these compounds and their effect on membranes has been correlated with their cation-complexing ability. The complexing reaction has been studied by spectropolarimetric and conductimetric methods. Nuclear magnetic resonance, optical rotatory dispersion, and infrared spectrophotometric studies have revealed the coexistence of conformers of the cyclodepsipeptides in solution and have led to elucidation of the spatial structure of valinomycin, enniatin B and their K+ complexes. The effect of the conformational properties of the cyclodepsipeptides on their complexation efficiency and selectivity, surface-active properties and behavior towards phospholipid monolayers, bimolecular phospholipid membranes and a number of biological membrane systems has been ascertained. The studies have clearly shown the feasibility of using cyclodepsipeptides with predetermined structural and conformational parameters as chemical tools for membrane studies. it is suggested that the principle of conformation-dependent cation binding through iondipole interactions may possibly lie at the basis of the mode of action of systems governing the natural ion permeability in biological membranes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bystrov, V. F., Portnova, S. L., Tsetlin, V. I., Ivanov, V. T., Ovchinnikov, Yu. A. 1969. Conformational studies of peptide systems. The rotational states of the NH-CH fragment of alanine dipeptides by nuclear magnetic resonance.Tetrahedron 25:493.PubMedGoogle Scholar
  2. 2.
    Das, B. C., Gero, S. D., Lederer, E. 1967. N-Methylation of N-acyloligopeptides.Biochem. Biophys. Res. Commun. 29: 211.PubMedGoogle Scholar
  3. 3.
    Dawson, R. M. C. 1963. The mechanism of action of phospholipase A.Biochem. J. 88:414.PubMedGoogle Scholar
  4. 4.
    Gaines, G. L. 1966. Insoluble monolayers at liquid-gas interfaces, p. 45. Interscience Publ. I. New York.Google Scholar
  5. 5.
    Harold, F. M., Baarda, J. R. 1967. Gramicidin, valinomycin and cation permeability ofStreptococcus faecalis.J. Bacteriol. 94:53.PubMedGoogle Scholar
  6. 6.
    Harris, E. J., Pressman, B. C. 1967. Obligate cation exchanges in red cells.Nature 216:918.PubMedGoogle Scholar
  7. 7.
    —, Catlin, G., Pressman, B. C. 1967. Effect of transport-inducing antibiotics and other agents on potassium flux in mitochondria.Biochemistry 6:1360.PubMedGoogle Scholar
  8. 8.
    Haynes, D. H., Kawalsky, A., Pressman, B. C. 1969. Application of nuclear magnetic resonance to the conformational changes in valinomycin during complexation.J. Biol. Chem. 244:502.PubMedGoogle Scholar
  9. 9.
    Ivanov, V. T., Laine, I. A., Abdullaev, N. D., Senyavina, L. B., Popov, E. M., Ovchinnikov, Yu. A., Shemyakin, M. M. 1969. The physicochemical basis of the functioning of biological membranes: The conformation of valinomycin and its K+ complex in solution.Biochem. Biophys. Res. Commun. 34:803.PubMedGoogle Scholar
  10. 10.
    Ivanov, V. T., Shilin, V. V., Ovchinnikov, Yu. A. 1970. The synthesis of cyclohexapeptides containing L-(D-)-alanine and glycine residues.Zh. Obshch. Khim (USSR), (in press).Google Scholar
  11. 11.
    Katz, A. I., Epstein, F. H. 1967. The physiological role of sodium-potassium activated adenosine triphosphatase in the active transport of cations across biological membranes.Israel J. Med. Sci. 3:155.PubMedGoogle Scholar
  12. 12.
    Lardy, H. A., Graven, S. N., Estrada-O, S. 1967. Specific induction and inhibition of cation and anion transport in mitochondria.Fed. Proc. 26:1355.PubMedGoogle Scholar
  13. 13.
    Lev, A. A., Bujinsky, E. P. 1967. Cation specificity of bimolecular phospholipid membranes containing the valinomycin.Tsitologiya (USSR) 9:102.Google Scholar
  14. 14.
    MacDonald, J. C., Slater, G. P. 1968. Biosynthesis of valinomycin.Canad. J. Biochem. 46:573.Google Scholar
  15. 15.
    Mikhaleva, I. I., Ryabova, I. D., Romanova, T. A., Tarasova, T. I., Ivanov, V. T., Ovchinnikov, Yu. A., Shemyakin, M. M. 1968. The structure-biological activity relations in the series of the enniatin B analogues.Zh. Obshch. Khim. (USSR),38:1228.Google Scholar
  16. 16.
    Mitchell, P. 1967. Translocations across natural membranes.Advanc. Enzymol. 29:33.Google Scholar
  17. 17.
    Molotkovskii, Yul. G., Lazurkina, T. Yu., Bergelson, L. D. 1969. The new approach to the synthesis of lecithins.Izv. Akad. Nauk SSSR, ser. khim. (USSR), p. 20.Google Scholar
  18. 18.
    Mueller, P., Rudin, D. O. 1967. Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398.PubMedGoogle Scholar
  19. 19.
    Ovchinnikov, Yu. A., Antonov, V. K., Bergelson, L. D., Ivanov, V. T., Malenkov, G. G., Shkrob, A. M., Shemyakin, M. M. 1969. Depsipeptides and peptides as chemical tools for studying ion transport through biological membranes.In: Abstracts of Communications on the 6-th Meeting of the Federation of Europ, Biochem. Socs. (Madrid, April 1969), p. 220. Publ. by the Spanish Biochem. Soc., Madrid.Google Scholar
  20. 20.
    —, Ivanov, V. T., Antonov, V. K., Shkrob, A. M., Mikhaleva, I. I., Evstratov, A. V., Malenkov, G. G., Melnik, E. I., Shemyakin, M. M. 1968. Cyclodepsipeptides as chemical instruments for studying membranes.In: Proc. 9th Europ. Peptide Symp., p. 56. North-Holland Publ. Co., Amsterdam.Google Scholar
  21. 21.
    Popov, E. M., Lipkind, G. M., Dashevsky, V. G., Arkhipova, S. F. 1968. Theoretical analysis of some methylamides: N-acetyl-glycine, N-acetyl-L-alanine, N-acetyl-L-valine and N-acetyl-L-proline.Molec. Biol. (USSR).2:622.Google Scholar
  22. 22.
    Pressman, B. C. 1965. Induced active transport of ions into mitochondria.Proc. Nat. Acad. Sci. 53:1076.PubMedGoogle Scholar
  23. 23.
    — 1967. Ion transport induction by valinomycin and related antibiotics.In: Proc. Intern. Symp. on the Mechanism of Action of Fungicides and Antibiotics. (Castle Reinhardsbrunn, Germany, May 1966), p. 3. Akademie-Verlag, Berlin.Google Scholar
  24. 24.
    —, Harris, E. J., Jagger, W. S., Johnson, I. H. 1967. Antibiotic-mediated transport of alkali ions across lipid barriers.Proc. Nat. Acad. Sci. 58:1949.PubMedGoogle Scholar
  25. 25.
    Shemyakin, M. M. Aldanova, N. A., Vinogradova, E. I., Feigina, M. Yu. 1963. The structure and total synthesis of valinomycin.Tetrahedron Lett. p. 1921.Google Scholar
  26. 26.
    Shemyakin, M. M., Aldanova, N. A., Vinogradova, E. I., Feigina, M. Yu. 1966. Investigations in depsipeptides chemistry. XLV. The structure and the synthesis of valinomycin.Izv. Akad. Nauk SSSR, ser. khim. (USSR), p. 2143.Google Scholar
  27. 27.
    —, Antonov, V. K., Bergelson, L. D., Ivanov, V. T., Malenkov, G. G., Ovchinnikov, Yu. A., Shkrob, A. M. 1969. Chemistry of membrane-affecting peptides, depsipeptides and depsides (structure-function relations).In: Proc. Symp. on Molecular Basis of Membrane Function (Durham, N. C. August 1968). p. 173. D. C. Tosteson, Ed., Prentice Hall, New York.Google Scholar
  28. 28.
    —, Ovchinnikov, Yu. A. 1967. The chemistry of natural depsipeptides.In: Recent Developments of Natural Carbon Compounds, vol. 2. p. 3. Publishing House of the Hungarian Academy of Sciences, Budapest.Google Scholar
  29. 29.
    Shemyakin, M. M., Ovchinnikov, Yu. A., Ivanov, V. T., Antonov, V. K., Shkrob, A. M., Mikhaleva, I. I.. Evstratov, A. V., Malenkov, G. G. 1967. The physicochemical basis of the functioning of biological membranes: Conformational specificity of the interaction of cyclodepsipeptides with alkali metal ions.Biochem. Biophys. Res. Commun. 29:834.Google Scholar
  30. 30.
    ——— Kiryushkin, A. A., Zhdanov, G. L., Ryabova, I. D. 1963. The structure-antimicrobial relation of depsipeptides.Experientia 19:566.PubMedGoogle Scholar
  31. 31.
    — Vinogradova, E. I., Feigina, M. Yu., Aldanova, N. A., Loginova, N. F., Ryabova, I. D., Pavlenko, I. A. 1965. The structure-activity relation for valinomycin depsipeptides.Experientia 21:548.PubMedGoogle Scholar
  32. 32.
    ————, Shvetsov, Yu. B., Fonina, L. A. 1966. The synthesis and the antimicrobial activity of valinomycin analogues.Zh. Obshch. Khim (USSR)36:1391.Google Scholar
  33. 33.
    Tosteson, D. C. 1967. Electrolyte composition and transport in red blood cells.Fed. Proc. 26:1805.PubMedGoogle Scholar
  34. 34.
    Wipf, H. K., Pioda, L. A. R., Štefanac, Z., Simon, W. 1968. The complexes of enniatins and other antibiotics with alkali metal ions.Helv. Chim. Acta 51:377.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1969

Authors and Affiliations

  • M. M. Shemyakin
    • 1
  • Yu. A. Ovchinnikov
    • 1
  • V. T. Ivanov
    • 1
  • V. K. Antonov
    • 1
  • E. I. Vinogradova
    • 1
  • A. M. Shkrob
    • 1
  • G. G. Malenkov
    • 1
  • A. V. Evstratov
    • 1
  • I. A. Laine
    • 1
  • E. I. Melnik
    • 1
  • I. D. Ryabova
    • 1
  1. 1.Institute for Chemistry of Natural ProductsUSSR Academy of SciencesMoscowUSSR

Personalised recommendations