The Journal of Membrane Biology

, Volume 1, Issue 1, pp 1–36 | Cite as

A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electric properties of bilayer membranes

  • S. Ciani
  • G. Eisenman
  • G. Szabo


To develop a quantitiative theoretical treatment for the effects of neutral macrocyclic antibiotics on the electrical properties of phospholipid bilayer membranes, this paper proceeds from the known ability of such molecules to form stoichiometric, lipid-soluble complexes with cations and deduces the electrical properties that a simple organic solvent phase would have if it were made into a membrane of the thinness of the phospholipid bilayer. In effect, we postulate that the essential barrier to ion movement across a bilayer membrane is its liquid-like hydrocarbon interior and that the neutral macrocyclic antibiotics bind monovalent cations and solubilize them in the membrane as mobile positively charged complexes. Using the Poisson-Boltzmann equation to describe the equilibrium profile of the electrical potential, it is shown that an excess of the positive complexes over all the other ions is expected in the membrane as a net space charge for appropriate conditions of membrane thickness and values of the partition coefficients of the various ionic species and without requiring the presence of fixed charges. Describing the fluxes of these complexes by the Nernst-Planck equation and neglecting the contribution to the electric current of uncomplexed ions, theoretical expressions are derived for the membrane potential in ionic mixtures, as well as for the limiting value of the membrane conductance at zero current when the membrane is interposed between identical solutions. The expressions are given in terms of the ionic activities and antibiotic concentrations in the aqueous solutions so as to be accessible to direct experimental test. Under suitable experimental conditions, the membrane potential is described by an equation recognizible as the Goldman-Hodgkin-Katz equation, in which the permeability ratios are combinations of parameters predicted from the present theory to be independently determinable from the ratio of membrane conductances in single salt solutions. Since this identity between permeability and conductance ratios is expected also for systems obeying the “Independence Principle” of Hodgkin and Huxley, the applicability of this principle to membranes exposed to antibiotics is discussed, and it is shown that this principle is compatible with the permeation mechanism proposed here.


Bilayer Membrane Phospholipid Bilayer Membrane Conductance Permeability Ratio Equilibrium Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreoli, T. E., M. Tieffenberg, and D. C. Tosteson. 1967. The effect of valinomycin on the ionic permeability of thin lipid membranes.J. Gen. Physiol. 50:2527.PubMedGoogle Scholar
  2. Cass, A., and A. Finkelstein. 1967. Effect of cholesterol on the water permeability of thin lipid membranes.Nature 216:717.PubMedGoogle Scholar
  3. Chapman, D. 1966. Liquid crystals and cell membranes.Ann. N. Y. Acad. Sci. 137:745.PubMedGoogle Scholar
  4. Ciani, S. M., G. Szabo, and G. Eisenman. 1969 a. An examination of the rate-limiting step for ion permeation of bilayer membranes.In preparation.Google Scholar
  5. Ciani, S. M., G. Szabo, and G. Eisenman. 1969 b. The effects of the charged polar head groups of the lipid on the electrical properties of bilayer membranes exposed to neutral carriers such as the Macrotetralide Actin antibiotics.In preparation.Google Scholar
  6. Ciani, S. M., G. Szabo, and G. Eisenman. 1969 c. The conductance of bilayer membranes exposed asymmetrically to salt solutions.In preparation.Google Scholar
  7. Conti, F., and G. Eisenman. 1965. The steady state properties of ion exchange membranes with fixed sites.Biophys. J. 5:511.Google Scholar
  8. Eigen, M., and L. DeMaeyer. 1969. Neurosciences research program work session on carriers and specificity in membranes.In press.Google Scholar
  9. Eisenman, G. 1967. The origin of the glass electrode potential.In Glass Electrodes for Hydrogen and Other Cations: Principles and Practice. G. Eisenman, editor. p. 1330. M. Dekker, New York.Google Scholar
  10. — 1968. Ion permeation of cell membranes and its models.Fed. Proc. 27:1249.PubMedGoogle Scholar
  11. — S. M. Ciani, and G. Szabo. 1968. Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions.Fed. Proc. 27:1289.PubMedGoogle Scholar
  12. Eisenman, G. S. M. Ciani, and G. Szabo. 1969. The effects of the macrotetralide actin antibiotics on equilibrium extraction of alkali metal salts into organic solvents.J. Membrane Biol. In preparation.Google Scholar
  13. Everitt, C. T., and D. A. Haydon. 1968. Electrical capacitance of lipid membrane separating two aqueous phases.J. Theoret. Biol. 18:371.Google Scholar
  14. Gerlach, H., and V. Prelog. 1963. Über die konfiguration der nonactinsäure.Liebigs Ann. 669:121.Google Scholar
  15. Goldman, D. E. 1943. Potential, impedance, and rectification in membranes.J. Gen. Physiol. 27:37.CrossRefGoogle Scholar
  16. Graven, S. N., H. A. Lardy, D. Johnson, and A. Rutter. 1966. Antibiotics as tools for metabolic studies. V. Effect of nonactin, monactin, dinactin, and trinactin on oxidative phosphorylation and adenosine triphosphatase induction.Biochemistry 5:1729.PubMedGoogle Scholar
  17. Henn, F. A., and T. E. Thompson. 1968. Properties of lipid bilayer membranes separating two aqueous phases: composition sites.J. Mol. Biol. 31:227.PubMedGoogle Scholar
  18. Hodgkin, A. L., and A. Huxley. 1952. The components of membrane conductance in the giant axon ofLoligo.J. Physiol. 116:473.Google Scholar
  19. —, and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. 116:473.Google Scholar
  20. Kilbourn, B. T., J. D. Dunitz, L. A. R. Pioda, and W. Simon. 1967. Structure of the K+ complex with nonactin, a macrotetralide antibiotic possessing specific K+ transport properties.J. Mol. Biol. 30:559.PubMedGoogle Scholar
  21. Lardy, H. A., S. N. Graven, and S. Estrada-O. 1967. Specific induction and inhibition of cation and anion transport in mitochondria.Fed. Proc. 26:1355.PubMedGoogle Scholar
  22. Laüger, P., W. Lesslauer, E. Marti, and J. Richter 1967. Electrical properties of bimolecular phospholipid membranes.Biochim. Biophys. Acta 135:20.PubMedGoogle Scholar
  23. Lev, A. A., and E. P. Buzhinsky. 1967. Cation specificity of the model bimolecular phospholipid membranes with incorporated valinomycin.Tsitologiya 9:102.Google Scholar
  24. Luzatti, V., and F. Husson. 1962. The structure of the liquid-crystalline phases of lipid-water systems.J. Cell Biol. 12:207.PubMedGoogle Scholar
  25. Mauro, A. 1962. Space charge regions in fixed charge membranes and the associated property of capacitance.Biophys. J. 2:179.Google Scholar
  26. Mueller, P., and D. O. Rudin. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398.PubMedGoogle Scholar
  27. Pioda, L. A. R., H. A. Wachter, R. E. Dohner, and W. Simon. 1967. Komplexe von nonactin und monactin mit natrium-, kalium- und ammonium-ionen.Helv. Chim. Acta 50:1373.Google Scholar
  28. Pressman, B. C. 1965. Induced active transport of ions into mitochondria.Proc. Nat. Acad. Sci., Wash. 53:1076.Google Scholar
  29. Pressman, B. C. 1968 a. Mechanism of action of transport mediating antibiotics.Ann. N. Y. Acad. Sci. In press.Google Scholar
  30. —, 1968b. Ionophorous antibiotics as models for biological transport.Fed. Proc. 27:1283.PubMedGoogle Scholar
  31. Sandblom, J. P., and G. Eisenman. 1967. Membrane potential at zero current. The significance of a constant ionic permeability ratio.Biophys. J. 7:217.PubMedGoogle Scholar
  32. Schmitt, F. O., 1939. The ultrastructure of protoplasmic constituents.Physiol. Rev. 19:270.Google Scholar
  33. Szabo, G. 1969. The effect of neutral molecular complexers of cations on the electrical properties of lipid bilayer membranes. Ph. D. Thesis. University of Chicago, Chicago, Ill.Google Scholar
  34. — G. Eisenman, and S. Ciani. 1969a Ion distribution equilibria in bulk phases and the ion transport properties of bilayer membranes produced by neutral macrocyclic antibiotics.In Proc. Coral Gables Conference on the Physical Principles of Biological Membranes, Dec. 18–20, 1968. Gordon and Breach, Science Publishers, New York,in press.Google Scholar
  35. Szabo, G. G. Eisenman, and S. Ciani. 1969 b. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes.J. Membrane Biol. In preparation.Google Scholar
  36. Tosteson, D. C. 1968. Effect of macrocyclic compounds on the ionic permeability of artificial and natural membranes.Fed. Proc. 27:1269.PubMedGoogle Scholar
  37. Van Deenen, L. L. M. 1965. Phospholipids and biomembranes.Progr. Chem. Fats Lipids 8 part 1:1.Google Scholar
  38. Verwey, E. J. W. 1940. Electrical double layer and stability of emulsions.Trans. Faraday Soc. 36:192.Google Scholar
  39. —, and J. Th. G. Overbeek. 1948. Theory of the stability of lyophobic celloids. p. 75. Elsevier Publishing Co., New York.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1969

Authors and Affiliations

  • S. Ciani
    • 1
  • G. Eisenman
    • 1
  • G. Szabo
    • 1
  1. 1.Department of PhysiologyThe University of ChicagoChicago

Personalised recommendations