The Journal of Membrane Biology

, Volume 89, Issue 2, pp 139–152 | Cite as

Inward membrane current inChara inflata: I. A voltage- and time-dependent Cl component

  • S. D. Tyerman
  • G. P. Findlay
  • G. J. Paterson
Articles

Summary

An inward current which increases in magnitude over a period of seconds is activated when the membrane ofChara inflata (a green alga) in a K+-conductive state is hyperpolarized by a voltage clamp. The peak current and the half-time of activation are exponentially dependent on membrane potential difference. It was found by using an external Cl electrode that the component exponentially dependent on potential was due to an efflux of Cl. The measured current-voltage curves and the kinetics of deactivation of the current showed that other time-dependent components contributed to the net inward current. The “punchthrough” theory of Coster (Biophys. J.5:669–686, 1965) does not adequately explain the inward current since a “punchthrough potential” could not be obtained, and the inward current was distinctly time dependent. The voltage and time dependence of the inward current strongly suggests that the Cl efflux activated by hyperpolarization is through voltage-gated channels which open more frequently as the membrane is hyperpolarized.

Key Words

Cl channels ion channels Chara inflata membranes punchthrough 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, C.M. 1975. Ionic pores, gates and gating currents.Q. Rev. Biophys. 7:179–210Google Scholar
  2. Beilby, M.J. 1984. Current-voltage characteristics of the proton pump atChara plasmalemma: I. pH dependence.J. Membrane Biol. 81:113–125Google Scholar
  3. Beilby, M.J., Coster, H.G.L. 1976. Effect of temperature on punchthrough in electrical characteristics of the plasmalemma ofChara corallina.Aust. J. Plant. Physiol. 3:819–826Google Scholar
  4. Beilby, M.J., Coster, H.G.L. 1979a. The action potential inChara corallina. III. The Hodgkin-Huxley parameters for the plasmalemma.Aust. J. Plant Physiol. 6:337–353Google Scholar
  5. Beilby, M.J., Coster, H.G.L. 1979b. The action potential inChara corallina. IV. Activation enthalpies of the Hodgkin-Huxley gates.Aust. J. Plant Physiol. 6:355–365Google Scholar
  6. Beilby, M.J., Walker, N.A. 1981. Chloride transport inChara. I. Kinetics and current-voltage curves for a probable proton symport.J. Exp. Bot. 32:43–54Google Scholar
  7. Bevington, P. 1969. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New YorkGoogle Scholar
  8. Bisson, M.A., Walker, N.A. 1982. Transitions between modes of behaviour (states) of the Charophyte plasmalemma.In: Plasmalemma and Tonoplast: Their Functions in the Plant Cell. D. Marmè, E. Marré and R. Hertel, editors. pp. 35–40. Elsevier Biomedical, AmsterdamGoogle Scholar
  9. Chesnoy-Marchais, D. 1983. Characterization of a chloride conductance activated by hyperpolarization inAplysia neurones.J. Physiol. (London) 342:277–308Google Scholar
  10. Coleman, H.A., Findlay, G.P. 1985. Ion channels in the membrane ofChara inflata.J. Membrane Biol. 83:109–118Google Scholar
  11. Coleman, H.A., Walker, N.A. 1984. Patch clamp recording from a plant cell. Proceedings of The Australian Physiological and Pharmacological Society15:196Google Scholar
  12. Coster, H.G.L. 1965. A quantitative analysis of the voltage-current relationships of fixed charge membranes and the associated property of “punch-through”.Biophys. J. 5:669–686PubMedGoogle Scholar
  13. Coster, H.G.L. 1969. The role of pH in the punch-through effect in the electrical characteristics ofChara australis.Aust. J. Biol. Sci. 22:365–374Google Scholar
  14. Coster, H.G.L., Hope, A.B. 1968. Ionic relations of cells ofChara australis. XI. Chloride fluxes.Aust. J. Biol. Sci. 21:243–254Google Scholar
  15. Ehrenstein, G., Lacar, H. 1977. Electrically gated ionic channels in lipid bilayers.Q. Rev. Biophys. 10:1–34PubMedGoogle Scholar
  16. Eisenberg, M., Hall, J.E., Mead, G.A. 1973. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes.J. Membrane Biol. 14:143–176Google Scholar
  17. Findlay, G.P. 1982. Electrogenic and diffusive components of the membrane ofHydrodictyon africanum.J. Membrane Biol. 68:179–189Google Scholar
  18. Findlay, G.P., Coleman, H. 1983. Potassium channels in the membrane ofHydrodictyon africanum.J. Membrane Biol. 75:241–251Google Scholar
  19. Findlay, G.P., Hope, A.B. 1964. Ionic relations of cells ofChara australis VII. The separate electrical characteristics of the plasmalemma and tonoplast.Aust. J. Biol. Sci. 17:62–77Google Scholar
  20. Findlay, G.P., Tyerman, S.D. 1983. Voltage-dependent inward current in the membrane ofChara inflata.In: Membrane Permeability: Experiments and Models. A. Bretag, editor Techsearch Inc., AdelaideGoogle Scholar
  21. Hansen, U.-P., Tittor, J., Gradmann, D. 1983. Interpretation of current-voltage relationships for “active” ion transport systems: II. Nonsteady-state reaction kinetic analysis of class-I mechanisms with one slow time-constant.J. Membrane Biol. 75:141–169Google Scholar
  22. Hope, A.B., Simpson, A., Walker, N.A. 1966. The efflux of chloride from cells ofNitella andChara.Aust. J. Biol. Sci. 19:355–362Google Scholar
  23. Jack, J.J.B., Noble, D., Tsien, R.W. 1975. Electric current flow in excitable cells. Clarendon, OxfordGoogle Scholar
  24. Jones, S., Walker, N.A. 1980. Chloride compartmentation inChara corallina by efflux analysis.In: Plant Membrane Transport: Current Conceptual Issues. R.M. Spanswick, W.J. Lucas and J. Dainty, editors. pp. 583–584. Elsevier/North Holland Biomedical, AmsterdamGoogle Scholar
  25. Kitasato, H. 1968. The influence of H+ on the membrane potential and ion fluxes ofNitella.J. Gen. Physiol. 52:60–87PubMedGoogle Scholar
  26. Lucas, W.J. 1982. Mechanism of aquisition of exogenous bicarbonate by internodal cells ofChara corallina.Planta 156:181–192CrossRefGoogle Scholar
  27. Reid, R.J., Walker, N.A. 1984. The energetics of Cl active transport inChara.J. Membrane Biol. 78:35–41Google Scholar
  28. Sanders, D. 1980. Control of plasma membrane Cl fluxes inChara corallina by external Cl and light.J. Exp. Bot. 31:105–118Google Scholar
  29. Smith, F.A., Walker, N.A. 1976. Chloride transport inChara corallina and the electrochemical potential difference for hydrogen ions.J. Exp. Bot. 27:451–459Google Scholar
  30. Spanswick, R.M. 1972. Evidence for an electrogenic ion pump inNitella translucens. I. The effects of pH, K+, Na+, light and temperature on the membrane potential and resistance.Biochim. Biophys. Acta 288:73–89PubMedGoogle Scholar
  31. Tyerman, S.D., Findlay, G.P., Paterson, G. 1985. Inward current inChara inflata. II. Effects of pH, Cl-channel blockers and NH4+, and significance for the hyperpolarized state.J. Membrane Biol. 89:153–161Google Scholar
  32. Walker, N.A., Smith, F.A. 1975. Intracellular pH inChara corallina measured by DMO distribution.Plant Sci. Lett. 4:125–132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • S. D. Tyerman
    • 1
  • G. P. Findlay
    • 1
  • G. J. Paterson
    • 1
  1. 1.School of Biological SciencesThe Flinders University of South AustraliaBedford Park

Personalised recommendations