Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Proton fluxes associated with erythrocyte membrane anion exchange

  • 49 Accesses

  • 87 Citations

Summary

Transient extracellular pH changes accompany the exchange of chloride for sulfate across the erythrocyte membrane. The direction of the extracellular pH change during chloride efflux and sulfate influx depends on experimental conditions. When bicarbonate is present, the extracellular pH drops sharply at the outset of the anion exchange and tends to follow the partial ionic equilibrium described by Wilbrandt (W. Wilbrandt, 1942.Pfluegers Arch. 246:291). When bicarbonate is absent, however, the anion exchange causes the pH to rise, indicating that protons are cotransported with sulfate during chloridesulfate exchange. The pH rise can be reversed by the addition of HCO 3 (4 μm) or 2,4-dinitrophenol (90 μm). This demonstrates that the proton-sulfate cotransport can drive proton transport uphill. The stoichiometry of the transport is that one chloríde exchanges for one sulfate plus one proton. These results support the titratable carrier model proposed by Gunn (Gunn, R.B. 1972.In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Roth and P. Astrup, editors. p. 823. Munksgaard, Copenhagen) for erythrocyte membrane anion exchange.

This is a preview of subscription content, log in to check access.

References

  1. Cabantchik, Z.I., Rothstein, A. 1974. Membrane proteins related to anion permeability of human red blood cells.J. Membrane Biol. 15:207

  2. Dalmark, M., wieth, J.O. 1972. Temperature dependence of chloride, bromide, iodide, thiocyanate, and salicylate transport in human red cells.J. Physiol. 224:583

  3. Deuticke, B. 1972. The transmembrane exchange of chloride with hydroxyl and other anions in mammalian red blood cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rørth and P. Astrup, editors. p. 307. Munksgaard, copenhagen

  4. Gruber, W., Deuticke, B. 1973. Comparative aspects of phosphate transfer across mammalian erythrocyte membranes.J. Membrane Biol. 13:19

  5. Gunn, R.B. 1972. A titratable carrier model for both mono- and di-valent anion transport in human red cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rørth and P. Astrup, editors. p. 823. Munksgaard, Copenhagen

  6. Hunter, M. J. 1971. A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell.J. Physiol. 218:49P

  7. Jacobs, M.H., Parpart, A.K. 1932. Is the erythrocyte membrane permeable to hydrogen ions?Biol. Bull. Woods Hole Mass. 62:63

  8. Jacobs, M.H., Stewart, D.R. 1942. The role of carbonic anhydrase in certain ionic exchanges involving the erythrocyte.J. Gen. Physiol. 25:539

  9. Jennings, M.L. 1976. Studies on the Erythrocyte Membrane: Characteristics of Anion Exchange and Phloretin Binding. Ph.D. Thesis. Harvard University, Cambridge, Massachusetts

  10. Lassen, U.V. 1972. Membrane potential and membrane resistance of red cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rørth and P. Astrup, editors, p. 291. Munksgaard, Copenhagen

  11. Lea, E.J.A., croghan, P.C. 1969. The effect of 2,4-dinitrophenol on the properties of thin phospholipid films.J. Membrane Biol. 1:225

  12. Lepke, S., Passow, H. 1971. The permeability of the human red blood cell to sulfate ions.J. Membrane Biol. 6:158

  13. McLaughlin, S. 1972. The mechanism of action of DNP on phospholipid bilayer membranes.J. Membrane Biol. 9:361

  14. Omachi, A. 1964. Sulfate transport in human red cells: Inhibition by some uncouplers of oxidative phosphorylation.Science 145:1449

  15. Parpart, A.K. 1940. Permeability of the erythrocyte for anions.Cold Spring Harbor Symp. Quant. Biol. 8:25

  16. Passow, H. 1964. Ion and water permeability of the red blood cell.In: The Red Blood Cell. C. Bishop and D.M. Surgenor, editors. p. 71. Academic Press, New York

  17. Passow, H., Wood, P.G. 1973. Current concepts of the mechanism of anion permeability.In: Drugs and Transport Processes. B.A. Callingham, editor. p. 149. MacMillan, London

  18. Scarpa, H., Cecchetto, A., Azzone, G.F. 1970. The mechanism of anion translocation and pH equilibration in erythrocytes.Biochim. Biophys. Acta 219:179

  19. Schwietzer, C.H., Passow, H. 1953. Kinetik und Gleichgewichte bei der langsamen Anionenpermeabilität roter Blutkörperchen.Pfluegers Arch. 256:419

  20. Severinghaus, J.W., Stupfel, M., Bradley, A.F. 1956. Accuracy of blood pH and PCO 2 determinations.J. Applied Physiol. 9:189

  21. Van Slyke, D.D., Sendroy, J., Jr., Hastings, A.B., Neill, J.M. 1928. Studies of gas and electrolyte equilibria in blood.J. Biol. Chem. 78:765

  22. Wieth, J.O., Dalmark, M., Gunn, R.B., Tosteson, D.C. 1973. The transfer of monovalent inorganic anions through the red cell membrane.In: Erythrocytes, Thrombocytes, Leucocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, editors. p. 71. Georg Thieme Verlag, Stuttgart

  23. Wilbrandt, W. 1942. Untersuchungen über langsamen Anionenaustausch durch die Erythrocytenmembran.Pfluegers Arch. 246:291

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jennings, M.L. Proton fluxes associated with erythrocyte membrane anion exchange. J. Membrain Biol. 28, 187–205 (1976). https://doi.org/10.1007/BF01869697

Download citation

Keywords

  • Bicarbonate
  • Erythrocyte Membrane
  • Anion Exchange
  • Proton Transport
  • Ionic Equilibrium